594 research outputs found

    Looking at the Haldane Conjecture from a Grouptheoretical Point of View

    Full text link
    Based on the Lieb-Schultz-Mattis construction we present a five parameter family of Spin-1 Hamiltonians with degenerate groundstate. Starting from the critical SU(3)SU(3) symmetric Hamiltonian, we look for those perturbations of the SU(3)SU(3) symmetry, which leave the groundstate degenerate. We also discuss the spin-3/2 SU(4)SU(4)-case.Comment: 9 pages RevTex 3.

    A Model-independent Description of New Physics effects in e+e- to t tbar

    Full text link
    We study the potential of a future e+ee^+e^- collider for the search of anomalous gamma t t bar and Z t t bar couplings, assuming that CP-invariance holds. This is done in a model-independent way, considering that all six possible couplings do appear. Two experimental situations are envisaged, with and without electron beam polarization. Observability limits in the form of domains in the 6-dimensional parameter space are established. Illustrations for specific constrained models are also presented and implications for new physics searches are discussed.Comment: 26 pages and 5 figures. e-mail: [email protected]

    Orbit spaces of free involutions on the product of two projective spaces

    Full text link
    Let XX be a finitistic space having the mod 2 cohomology algebra of the product of two projective spaces. We study free involutions on XX and determine the possible mod 2 cohomology algebra of orbit space of any free involution, using the Leray spectral sequence associated to the Borel fibration XXZ2BZ2X \hookrightarrow X_{\mathbb{Z}_2} \longrightarrow B_{\mathbb{Z}_2}. We also give an application of our result to show that if XX has the mod 2 cohomology algebra of the product of two real projective spaces (respectively complex projective spaces), then there does not exist any Z2\mathbb{Z}_2-equivariant map from SkX\mathbb{S}^k \to X for k2k \geq 2 (respectively k3k \geq 3), where Sk\mathbb{S}^k is equipped with the antipodal involution.Comment: 14 pages, to appear in Results in Mathematic

    Potts model on recursive lattices: some new exact results

    Full text link
    We compute the partition function of the Potts model with arbitrary values of qq and temperature on some strip lattices. We consider strips of width Ly=2L_y=2, for three different lattices: square, diced and `shortest-path' (to be defined in the text). We also get the exact solution for strips of the Kagome lattice for widths Ly=2,3,4,5L_y=2,3,4,5. As further examples we consider two lattices with different type of regular symmetry: a strip with alternating layers of width Ly=3L_y=3 and Ly=m+2L_y=m+2, and a strip with variable width. Finally we make some remarks on the Fisher zeros for the Kagome lattice and their large q-limit.Comment: 17 pages, 19 figures. v2 typos corrected, title changed and references, acknowledgements and two further original examples added. v3 one further example added. v4 final versio

    Distribution and density of the partition function zeros for the diamond-decorated Ising model

    Full text link
    Exact renormalization map of temperature between two successive decorated lattices is given, and the distribution of the partition function zeros in the complex temperature plane is obtained for any decoration-level. The rule governing the variation of the distribution pattern as the decoration-level changes is given. The densities of the zeros for the first two decoration-levels are calculated explicitly, and the qualitative features about the densities of higher decoration-levels are given by conjecture. The Julia set associated with the renormalization map is contained in the distribution of the zeros in the limit of infinite decoration level, and the formation of the Julia set in the course of increasing the decoration-level is given in terms of the variations of the zero density.Comment: 8 pages,8figure

    The transition from the adiabatic to the sudden limit in core level photoemission: A model study of a localized system

    Full text link
    We consider core electron photoemission in a localized system, where there is a charge transfer excitation. The system is modelled by three electron levels, one core level and two outer levels. The model has a Coulomb interaction between these levels and the continuum states into which the core electron is emitted. The model is simple enough to allow an exact numerical solution, and with a separable potential an analytic solution. We calculate the ratio r(omega) between the weights of the satellite and the main peak as a function of the photon energy omega. The transition from the adiabatic to the sudden limit takes place for quite small photoelectron kinetic energies. For such small energies, the variation of the dipole matrix element is substantial and described by the energy scale Ed. Without the coupling to the photoelectron, the corresponding ratio r0(omega) is determined by Ed and the satellite excitation energy dE. When the interaction potential with the continuum states is introduced, a new energy scale Es=1/(2Rs^2) enters, where Rs is a length scale of the interaction potential. At threshold there is typically a (weak) constructive interference between intrinsic and extrinsic contributions, and the ratio r(omega)/r0(omega) is larger than its limiting value for large omega. The interference becomes small or weakly destructive for photoelectron energies of the order Es. For larger energies r(omega)/r0(omega) therefore typically has a weak undershoot. If this undershoot is neglected, r(omega)/r0(omega) reaches its limiting value on the energy scale Es.Comment: 18 pages, latex2e, 13 eps figure

    Effective Field Theories on Non-Commutative Space-Time

    Get PDF
    We consider Yang-Mills theories formulated on a non-commutative space-time described by a space-time dependent anti-symmetric field θμν(x)\theta^{\mu\nu}(x). Using Seiberg-Witten map techniques we derive the leading order operators for the effective field theories that take into account the effects of such a background field. These effective theories are valid for a weakly non-commutative space-time. It is remarkable to note that already simple models for θμν(x)\theta^{\mu\nu}(x) can help to loosen the bounds on space-time non-commutativity coming from low energy physics. Non-commutative geometry formulated in our framework is a potential candidate for new physics beyond the standard model.Comment: 22 pages, 1 figur

    The anomalous Higgs-top couplings in the MSSM

    Full text link
    The anomalous couplings of the top quark and the Higgs boson has been studied in an effective theory resulting in the framework of the minimal supersymmetric extension of the standard model (MSSM) when the heavy fields are integrated out. Constraints on the parameters of the model from the experimental data on the ratio Rb=Γ(Zbbˉ)/Γ(Zhadrons)R_b={\Gamma(Z\to b\bar{b})/\Gamma(Z\to hadrons)} are derived.Comment: Latex, 26 pages + 13 ps figures, final version in PR

    Symmetries and Elasticity of Nematic Gels

    Full text link
    A nematic liquid-crystal gel is a macroscopically homogeneous elastic medium with the rotational symmetry of a nematic liquid crystal. In this paper, we develop a general approach to the study of these gels that incorporates all underlying symmetries. After reviewing traditional elasticity and clarifying the role of broken rotational symmetries in both the reference space of points in the undistorted medium and the target space into which these points are mapped, we explore the unusual properties of nematic gels from a number of perspectives. We show how symmetries of nematic gels formed via spontaneous symmetry breaking from an isotropic gel enforce soft elastic response characterized by the vanishing of a shear modulus and the vanishing of stress up to a critical value of strain along certain directions. We also study the phase transition from isotropic to nematic gels. In addition to being fully consistent with approaches to nematic gels based on rubber elasticity, our description has the important advantages of being independent of a microscopic model, of emphasizing and clarifying the role of broken symmetries in determining elastic response, and of permitting easy incorporation of spatial variations, thermal fluctuations, and gel heterogeneity, thereby allowing a full statistical-mechanical treatment of these novel materials.Comment: 21 pages, 4 eps figure
    corecore