209 research outputs found

    Light-shift modulated photon-echo

    Get PDF
    We show that the AC-Stark shift (light-shift) is a powerful and versatile tool to control the emission of a photon-echo in the context of optical storage. As a proof-of-principle, we demonstrate that the photon-echo efficiency can be fully modulated by applying light-shift control pulses in an erbium doped solid. The control of the echo emission is attributed to the spatial gradient induced by the light-shift beam

    Storage of RF photons in minimal conditions

    Full text link
    We investigate the minimal conditions to store coherently a RF pulse in a material medium. We choose a commercial quartz as memory support because it is a widely available component with a high Q-factor. Pulse storage is obtained by varying dynamically the light-matter coupling with an analog switch. This parametric driving of the quartz dynamics can be alternatively interpreted as a stopped light experiment. We obtain an efficiency of 26%, a storage time of 209μ\mus and a time-to-bandwidth product of 98 by optimizing the pulse temporal shape. The coherent character of the storage is demonstrated. Our goal is to connect different types of memories in the RF and optical domain for quantum information processing. Our motivation is essentially fundamental

    Phase space density limitation in laser cooling without spontaneous emission

    Full text link
    We study the possibility to enhance the phase space density of non-interacting particles submitted to a classical laser field without spontaneous emission. We clearly state that, when no spontaneous emission is present, a quantum description of the atomic motion is more reliable than semi-classical description which can lead to large errors especially if no care is taken to smooth structures smaller than the Heisenberg uncertainty principle. Whatever the definition of position - momentum phase space density, its gain is severely bounded especially when started from a thermal sample. More precisely, the maximum phase space density, can only be improved by a factor M for M-level atoms. This bound comes from a transfer between the external and internal degrees of freedom. To circumvent this limit, one can use non-coherent light fields, informational feedback cooling schemes, involve collectives states between fields and atoms, or allow a single spontaneous emission evenComment: 3 figures, 4 page

    Piezospectroscopic measurement of high-frequency vibrations in a pulse-tube cryostat

    Full text link
    Vibrations in cryocoolers are a recurrent concern to the end user. They appear in different parts of the acoustic spectrum depending on the refrigerator type, Gifford McMahon or pulse-tube, and with a variable coupling strength to the physical system under interest. Here, we use the piezospectroscopic effect in rare-earth doped crystals at low temperature as a high resolution, contact-less probe for the vibrations. With this optical spectroscopic technique, we obtain and analyze the vibration spectrum up to 700kHz of a 2kW pulse-tube cooler. We attempt an absolute calibration based on known experimental parameters to make our method partially quantitative and to provide a possible comparison with other well-established techniques

    Efficiency optimization for Atomic Frequency Comb storage

    Full text link
    We study the efficiency of the Atomic Frequency Comb storage protocol. We show that for a given optical depth, the preparation procedure can be optimize to significantly improve the retrieval. Our prediction is well supported by the experimental implementation of the protocol in a \TMYAG crystal. We observe a net gain in efficiency from 10% to 17% by applying the optimized preparation procedure. In the perspective of high bandwidth storage, we investigate the protocol under different magnetic fields. We analyze the effect of the Zeeman and superhyperfine interaction

    Quantum memory for light: large efficiency at telecom wavelength

    Full text link
    We implement the ROSE protocol in an erbium doped solid, compatible with the telecom range. The ROSE scheme is an adaptation of the standard 2-pulse photon echo to make it suitable for a quantum memory. We observe an efficiency of 40% in a forward direction by using specific orientations of the light polarizations, magnetic field and crystal axes

    Analytic treatment of CRIB Quantum Memories for Light using Two-level Atoms

    Full text link
    It has recently been discovered that the optical analogue of a gradient echo in an optically thick material could form the basis of a optical memory that is both completely efficient and noise free. Here we present analytical calculation showing this is the case. There is close analogy between the operation of the memory and an optical system with two beam splitters. We can use this analogy to calculate efficiencies as a function of optical depth for a number of quantum memory schemes based on controlled inhomogeneous broadening. In particular we show that multiple switching leads to a net 100% retrieval efficiency for the optical gradient echo even in the optically thin case.Comment: 10 page

    Selective optical addressing of nuclear spins through superhyperfine interaction in rare-earth doped solids

    Full text link
    In Er3+^{3+}:Y2_2SiO5_5, we demonstrate the selective optical addressing of the 89^{89}Y3+^{3+} nuclear spins through their superhyperfine coupling with the Er3+^{3+} electronic spins possessing large Land\'e gg-factors. We experimentally probe the electron-nuclear spin mixing with photon echo techniques and validate our model. The site-selective optical addressing of the Y3+^{3+} nuclear spins is designed by adjusting the magnetic field strength and orientation. This constitutes an important step towards the realization of long-lived solid-state qubits optically addressed by telecom photons.Comment: 5 pages, 4 figures, supplementary material (3 pages
    corecore