3 research outputs found

    A new methodology for the reductive cyclization of omega-azido carbonyl compounds mediated by tetrathiomolybdate: Application to an efficient synthesis of pyrrolo[2,1-c][1,4]benzodiazepines

    No full text
    The omega-azido carbonyl compounds on treatment with tetrathiomolybdate, 1 led to the formation of 5, 6 and 7 membered cyclic imines in very good yields under mild conditions. This method is applied successfully to a new efficient synthesis of 1,4-benzodiazapinone derivatives and in particular Bzl DC-81

    Electrical Characteristics of a 6H-SiC Epitaxial Layer Grown by Chemical Vapor Deposition on Porous SiC Substrate

    No full text
    Porous SiC (PSC) has been proposed as a buffer layer for reducing defects in epitaxial SiC layers. In this study, electrical characteristics of a 6H-SiC epitaxial layer grown by chemical vapor deposition on a porous SiC substrate (SiC-on-PSC) have been compared to those simultaneously grown on a standard SiC substrate (SiC-on-STD). Schottky barrier diodes (SBDs) have been fabricated on both epitaxial layers and then investigated with temperature-dependent current-voltage (I-V), capacitance-voltage (C-V), and deep-level transient spectroscopy (DLTS) measurements. The SBDs on both SiC-on-PSC and SiC-on-STD show about the same I-V and C-V characteristics, and at least four electron traps, i.e., B (0.75 eV), C (0.63 eV), D (0.40 eV), and E (0.16 eV), can be identically found in both SBDs by DLTS measurements. Thus, we conclude that the electrical quality of SiC-on-PSC is comparable to that of SiC-on-STD, and that the higher breakdown voltages observed in SBDs on SiC-on-PSC are not obviously related to a different defect structure

    Electrical Characteristics of a 6H-SiC Epitaxial Layer Grown by Chemical Vapor Deposition on Porous SiC Substrate

    No full text
    Porous SiC (PSC) has been proposed as a buffer layer for reducing defects in epitaxial SiC layers. In this study, electrical characteristics of a 6H-SiC epitaxial layer grown by chemical vapor deposition on a porous SiC substrate (SiC-on-PSC) have been compared to those simultaneously grown on a standard SiC substrate (SiC-on-STD). Schottky barrier diodes (SBDs) have been fabricated on both epitaxial layers and then investigated with temperature-dependent current-voltage (I-V), capacitance-voltage (C-V), and deep-level transient spectroscopy (DLTS) measurements. The SBDs on both SiC-on-PSC and SiC-on-STD show about the same I-V and C-V characteristics, and at least four electron traps, i.e., B (0.75 eV), C (0.63 eV), D (0.40 eV), and E (0.16 eV), can be identically found in both SBDs by DLTS measurements. Thus, we conclude that the electrical quality of SiC-on-PSC is comparable to that of SiC-on-STD, and that the higher breakdown voltages observed in SBDs on SiC-on-PSC are not obviously related to a different defect structure
    corecore