48 research outputs found

    CD1a expression by Barrett's metaplasia of gastric type may help to predict its evolution towards cancer

    Get PDF
    As emerging in the recent literature, CD1a has been regarded as a molecule whose expression may reflect tumour evolution. The aim of the present work was to investigate the expression of CD1a in a series of Barrett's metaplasia (BM), gastric type (GTBM), with and without follow-up, in order to analyse whether its expression may help to diagnose this disease and to address the outcome. Indeed, GTBM may be confused sometimes with islets of ectopic gastric mucosa and its evolution towards dysplasia (Dy) or carcinoma (Ca) could not be foreseen. We showed a significant higher expression of CD1a in GTBM than in both Dy and Ca; nevertheless, the number of positive GTBM was significantly lower in the group of cases that at follow-up underwent Dy or Ca. Our data address that CD1a may be a novel biomarker for BM and that its expression may help to predict the prognosis of this pathology

    Analysis of arterial intimal hyperplasia: review and hypothesis

    Get PDF
    which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background: Despite a prodigious investment of funds, we cannot treat or prevent arteriosclerosis and restenosis, particularly its major pathology, arterial intimal hyperplasia. A cornerstone question lies behind all approaches to the disease: what causes the pathology? Hypothesis: I argue that the question itself is misplaced because it implies that intimal hyperplasia is a novel pathological phenomenon caused by new mechanisms. A simple inquiry into arterial morphology shows the opposite is true. The normal multi-layer cellular organization of the tunica intima is identical to that of diseased hyperplasia; it is the standard arterial system design in all placentals at least as large as rabbits, including humans. Formed initially as one-layer endothelium lining, this phenotype can either be maintained or differentiate into a normal multi-layer cellular lining, so striking in its resemblance to diseased hyperplasia that we have to name it "benign intimal hyperplasia". However, normal or "benign " intimal hyperplasia, although microscopically identical to pathology, is a controllable phenotype that rarely compromises blood supply. It is remarkable that each human heart has coronary arteries in which a single-layer endothelium differentiates earl
    corecore