57 research outputs found
Phylogeny of conserved adenines in linkers of Group-I introns
We have analyzed the linkers in group-I introns, a characteristic region that is crucial to the folding and splicing process of the folded RNA, in seventy sequences spreading across r-RNA, t-RNA and organelle genes from various organisms including algae, fungi and protozoa. The study revealed a high degree of consensus of specific adenine residues in J3/4, J6/7 and J8/7 stems of the linker regions that were required to stabilize the local orientation, either as single residue or by forming unusual base pairs along with divalent metal ions. Conservation of these residues in the Group-I intron linkers suggests their significant contribution to the folded structure whose bonding and geometry recruit metal ions to interact in stabilizing the folded nature of RNA
Morphological and growth altering effects of Cisplatin in C. albicans using fluorescence microscopy
Changes in morphology and growth curve of Candida albicans in response to treatment by Cisplatin has been studied using fluorescence staining with ethidium bromide. Treatment with Cisplatin was found to markedly inhibit hyphae and ovoid growth as revealed by ethidium bromide staining of drug treated cells. These changes were concomitant with inhibitory effects on the growth curve with respect to untreated cells Presence of Cisplatin not only caused suppression in the limiting values in the growth curve, but also caused a slight left shift in the EC50 values. Some of the ovoid cells undergoing poisoning with cisplatin were found to be unusually enlarged before undergoing their natural fate thus suggesting formation of similar cytotoxic end products with DNA
Targeted Disruption of Ephrin B1 in Cells of Myeloid Lineage Increases Osteoclast Differentiation and Bone Resorption in Mice
Disruption of ephrin B1 in collagen I producing cells in mice results in severe skull defects and reduced bone formation. Because ephrin B1 is also expressed during osteoclast differentiation and because little is known on the role of ephrin B1 reverse signaling in bone resorption, we examined the bone phenotypes in ephrin B1 conditional knockout mice, and studied the function of ephrin B1 reverse signaling on osteoclast differentiation and resorptive activity. Targeted deletion of ephrin B1 gene in myeloid lineage cells resulted in reduced trabecular bone volume, trabecular number and trabecular thickness caused by increased TRAP positive osteoclasts and bone resorption. Histomorphometric analyses found bone formation parameters were not changed in ephrin B1 knockout mice. Treatment of wild-type precursors with clustered soluble EphB2-Fc inhibited RANKL induced formation of multinucleated osteoclasts, and bone resorption pits. The same treatment of ephrin B1 deficient precursors had little effect on osteoclast differentiation and pit formation. Similarly, activation of ephrin B1 reverse signaling by EphB2-Fc treatment led to inhibition of TRAP, cathepsin K and NFATc1 mRNA expression in osteoclasts derived from wild-type mice but not conditional knockout mice. Immunoprecipitation with NHERF1 antibody revealed ephrin B1 interacted with NHERF1 in differentiated osteoclasts. Treatment of osteoclasts with exogenous EphB2-Fc resulted in reduced phosphorylation of ezrin/radixin/moesin. We conclude that myeloid lineage produced ephrin B1 is a negative regulator of bone resorption in vivo, and that activation of ephrin B1 reverse signaling inhibits osteoclast differentiation in vitro in part via a mechanism that involves inhibition of NFATc1 expression and modulation of phosphorylation status of ezrin/radixin/moesin
Lack of anabolic response to skeletal loading in mice with targeted disruption of the pleiotrophin gene
<p>Abstract</p> <p>Background</p> <p>In a previous study we showed, using the whole genome microarray approach, that pleiotrophin (PTN) expression was increased by 4-fold in response to mechanical loading (ML) in a good responder C57BL/6J (B6) mice. To address PTN role in mediating ML effects on bone formation, we first evaluated time course effects of ML on expression levels of PTN gene using real time RT-PCR in 10 week female B6 mice. A 9 N load was applied using a four-point bending device at 2 Hz frequency for 36 cycles, once per day for 2, 4 and 12 days on the right tibia and the left tibia was used as internal control.</p> <p>Findings</p> <p>Four-point bending caused an acute increase in PTN expression (2-fold) within 2 days of loading and further increased (3β6 fold) with continued loading. This increase was also seen in 16 and 36-week old mice. Based on these findings, we next used PTN knockout (KO) mice to evaluate the cause and effect relationship. Quantitative analysis showed that two weeks of ML induced changes in vBMD and bone size in the PTN KO mice (8% and 6% vs. non-loaded bones) were not significantly different from control mice (11% and 8% in vBMD and bone size vs. non-loaded bones).</p> <p>Conclusion</p> <p>Our results imply that PTN is not a key upstream mediator of the anabolic effects of ML on the skeleton.</p
Long-term Consequences of Traumatic Brain Injury in Bone Metabolism
Traumatic brain injury (TBI) leads to long-term cognitive, behavioral, affective deficits, and increase neurodegenerative diseases. It is only in recent years that there is growing awareness that TBI even in its milder form poses long-term health consequences to not only the brain but to other organ systems. Also, the concept that hormonal signals and neural circuits that originate in the hypothalamus play key roles in regulating skeletal system is gaining recognition based on recent mouse genetic studies. Accordingly, many TBI patients have also presented with hormonal dysfunction, increased skeletal fragility, and increased risk of skeletal diseases. Research from animal models suggests that TBI may exacerbate the activation and inactivation of molecular pathways leading to changes in both osteogenesis and bone destruction. TBI has also been found to induce the formation of heterotopic ossification and increased callus formation at sites of muscle or fracture injury through increased vascularization and activation of systemic factors. Recent studies also suggest that the disruption of endocrine factors and neuropeptides caused by TBI may induce adverse skeletal effects. This review will discuss the long-term consequences of TBI on the skeletal system and TBI-induced signaling pathways that contribute to the formation of ectopic bone, altered fracture healing, and reduced bone mass
WNT16 Regulation of the Articular Chondrocyte Phenotype in Mice
The anabolic effects of WNT16 on osteoblasts are well established, however, little is known regarding the role of WNT16 in chondrocytes. In this study, we evaluated Wnt16 expression and its biological effects on mouse articular chondrocytes (ACs), since these cells are key to the development of osteoarthritis. While ACs derived from the long bone epiphysis of 7-day old C57BL/6J mice express multiple Wnts, Wnt5b and Wnt16 represent the two most highly expressed Wnts (expressed at several-fold higher levels than other Wnts). Treatment of serum-free AC cultures, with 100 ng/mL of recombinant human (rh) WNT16 for 24 h (hrs), increased proliferation (20%, p Sox9 and Col2) of immature chondrocytes at both 24 h and 72 h, while Acan increased at 72 h. Expression of Mmp9, a marker of mature chondrocytes was decreased at 24 h. Additionally, WNT16 treatment regulated expression levels of Wnt ligands in a biphasic manner, inhibiting its expression at 24 h, while stimulating expression at 72 h. To determine whether WNT16 exerted anabolic effects on the AC phenotype, ex vivo cultures of tibial epiphyses were treated with rhWNT16 or vehicle for 9 days, and the articular cartilage phenotype was evaluated by safranin O cartilage staining and expression of articular cartilage marker genes. Both articular cartilage area and expression levels of AC markers were increased after rhWNT16 treatment. Our data suggest that Wnt16 expressed in ACs may play a role in regulating joint cartilage homeostasis via its direct effect, as well as through modulating the expression of other Wnt ligands
- β¦