3,875 research outputs found
The Bell-Szekeres Solution and Related Solutions of the Einstein-Maxwell Equations
A novel technique for solving some head-on collisions of plane homogeneous
light-like signals in Einstein-Maxwell theory is described. The technique is a
by-product of a re-examination of the fundamental Bell-Szekeres solution in
this field of study. Extensions of the Bell-Szekeres collision problem to
include light-like shells and gravitational waves are described and a family of
solutions having geometrical and topological properties in common with the
Bell-Szekeres solution is derived.Comment: 18 pages, Latex fil
Colliding Plane Impulsive Gravitational Waves
When two non-interacting plane impulsive gravitational waves undergo a
head-on collision, the vacuum interaction region between the waves after the
collision contains backscattered gravitational radiation from both waves. The
two systems of backscattered waves have each got a family of rays (null
geodesics) associated with them. We demonstrate that if it is assumed that a
parameter exists along each of these families of rays such that the modulus of
the complex shear of each is equal then Einstein's vacuum field equations, with
the appropriate boundary conditions, can be integrated systematically to reveal
the well-known solutions in the interaction region. In so doing the mystery
behind the origin of such solutions is removed. With the use of the field
equations it is suggested that the assumption leading to their integration may
be interpreted physically as implying that the energy densities of the two
backscattered radiation fields are equal. With the use of different boundary
conditions this approach can lead to new collision solutions.Comment: 21 pages, LaTeX2
Applied constant gain amplification in circulating loop experiments
The reconfiguration of channel or wavelength routes in optically transparent mesh networks can lead to deviations in channel power that may impact transmission performance. A new experimental approach, applied constant gain, is used to maintain constant gain in a circulating loop enabling the study of gain error effects on long-haul transmission under reconfigured channel loading. Using this technique we examine a number of channel configurations and system tuning operations for both full-span dispersion-compensated and optimized dispersion-managed systems. For each system design, large power divergence was observed with a maximum of 15 dB at 2240 km, when switching was implemented without additional system tuning. For a bit error rate of 10-3, the maximum number of loop circulations was reduced by up to 33%
The spatial correlations in the velocities arising from a random distribution of point vortices
This paper is devoted to a statistical analysis of the velocity fluctuations
arising from a random distribution of point vortices in two-dimensional
turbulence. Exact results are derived for the correlations in the velocities
occurring at two points separated by an arbitrary distance. We find that the
spatial correlation function decays extremely slowly with the distance. We
discuss the analogy with the statistics of the gravitational field in stellar
systems.Comment: 37 pages in RevTeX format (no figure); submitted to Physics of Fluid
Dynamic circulating-loop methods for transmission experiments in optically transparent networks
Recent experiments incorporating multiple fast switching elements and automated system configuration in a circulating loop apparatus have enabled the study of aspects of long-haul WDM transmission unique to optically transparent networks. Techniques include per-span switching to measure the performance limits due to dispersion compensation granularity and mesh network walk-off, and applied constant-gain amplification to evaluate wavelength reconfiguration penalties
Stellar Dynamics and Black Holes
Chandrasekhar's most important contribution to stellar dynamics was the
concept of dynamical friction. I briefly review that work, then discuss some
implications of Chandrasekhar's theory of gravitational encounters for motion
in galactic nuclei.Comment: Talk presented at the "Chandrasekhar Centenary Conference" (2010
-Minkowski and Snyder algebra from reparametrisation symmetry
Following our earlier work \cite{sunandan1, sunandan2}, we derive
noncommuting phase-space structures which are combinations of both the
-Minkowski and Snyder algebra by exploiting the reparametrisation
symmetry of the recently proposed Lagrangian for a point particle \cite{subir}
satisfying the exact Doubly Special Relativity dispersion relation in the
Magueijo-Smolin framework.Comment: Accepted in Euro Physics Letter
The weakly perturbed Schwarzschild lens in the strong deflection limit
We investigate the strong deflection limit of gravitational lensing by a
Schwarzschild black hole embedded in an external gravitational field. The study
of this model, analogous to the Chang & Refsdal lens in the weak deflection
limit, is important to evaluate the gravitational perturbations on the
relativistic images that appear in proximity of supermassive black holes hosted
in galactic centers. By a simple dimensional argument, we prove that the tidal
effect on the light ray propagation mainly occurs in the weak field region far
away from the black hole and that the external perturbation can be treated as a
weak field quadrupole term. We provide a description of relativistic critical
curves and caustics and discuss the inversion of the lens mapping. Relativistic
caustics are shifted and acquire a finite diamond shape. Sources inside the
caustics produce four sequences of relativistic images. On the other hand,
retro-lensing caustics are only shifted while remaining point-like to the
lowest order.Comment: 12 pages, 1 figure
Electron-Neutrino Bremsstrahlung in Electro-Weak Theory
The electron-neutrino bremsstrahlung process has been considered in the
framework of electro-weak theory. The scattering cross section has been
calculated in the center of mass frame and approximated to extreme relativistic
as well as non-relativistic case. The rate of energy-loss via this type of
bremsstrahlung process has been obtained both in non-degenerate and degenerate
region. The effect of this electron-neutrino bremsstrahlung process in
different ranges of temperature and density characterizing the late stages of
stellar evolution has been discussed. It is found from our study that this
bremsstrahlung process is highly important in the non-degenerate region,
although it might have some significant effect in the extreme relativistic
degenerate region.Comment: 18 pages including 4 figures and 1 table; Published in J. Phys
Exact Results for Evaporating Black Holes in Curvature-Squared Lovelock Gravity: Gauss-Bonnet Greybody Factors
Lovelock gravity is an important extension of General Relativity that
provides a promising framework to study curvature corrections to the Einstein
action, while avoiding ghosts and keeping second order field equations. This
paper derives the greybody factors for D-dimensional black holes arising in a
theory with a Gauss-Bonnet curvature-squared term. These factors describe the
non-trivial coupling between black holes and quantum fields during the
evaporation process: they can be used both from a theoretical viewpoint to
investigate the intricate spacetime structure around such a black hole, and for
phenomenological purposes in the framework of braneworld models with a low
Planck scale. We derive exact spectra for the emission of scalar, fermion and
gauge fields emitted on the brane, and for scalar fields emitted in the bulk,
and demonstrate how the Gauss-Bonnet term can change the bulk-to-brane emission
rates ratio in favour of the bulk channel in particular frequency regimes.Comment: 29 pages, Latex file, 11 figures, Data files (greybody factors)
available at http://lpsc.in2p3.fr/ams/greybody/, typos corrected, references
added, version to appear in Phys. Rev.
- âŠ