5,399 research outputs found

    Perturbative Analysis of Universality and Individuality in Gravitational Waves from Neutron Stars

    Full text link
    The universality observed in gravitational wave spectra of non-rotating neutron stars is analyzed here. We show that the universality in the axial oscillation mode can be reproduced with a simple stellar model, namely the centrifugal barrier approximation (CBA), which captures the essence of the Tolman VII model of compact stars. Through the establishment of scaled co-ordinate logarithmic perturbation theory (SCLPT), we are able to explain and quantitatively predict such universal behavior. In addition, quasi-normal modes of individual neutron stars characterized by different equations of state can be obtained from those of CBA with SCLPT.Comment: 29 pages, 10 figures, submitted to Astrophysical Journa

    Physical Processes in Naked Singularity Formation

    Get PDF
    Gravitational collapse is one of the most fruitful subjects in gravitational physics. It is well known that singularity formation is inevitable in complete gravitational collapse. It was conjectured that such a singularity should be hidden by horizons if it is formed from generic initial data with physically reasonable matter fields. Many possible counterexamples to this conjecture have been proposed over the past three decades, although none of them has proved to be sufficiently generic. In these examples, there appears a singularity that is not hidden by horizons. This singularity is called a `naked singularity.' The appearance of a naked singularity represents the formation of an observable high-curvature, strong-gravity region. In this paper we review examples of naked singularity formation and recent progress in research of observable physical processes - gravitational radiation and quantum particle creation - from a forming naked singularity.Comment: 76 pages, 25 figure file

    On the r-mode spectrum of relativistic stars in the low-frequency approximation

    Get PDF
    The axial modes for non-barotropic relativistic rotating neutron stars with uniform angular velocity are studied, using the slow-rotation formalism together with the low-frequency approximation, first investigated by Kojima. The time independent form of the equations leads to a singular eigenvalue problem, which admits a continuous spectrum. We show that for l=2l=2, it is nevertheless also possible to find discrete mode solutions (the rr-modes). However, under certain conditions related to the equation of state and the compactness of the stellar model, the eigenfrequency lies inside the continuous band and the associated velocity perturbation is divergent; hence these solutions have to be discarded as being unphysical. We corroborate our results by explicitly integrating the time dependent equations. For stellar models admitting a physical rr-mode solution, it can indeed be excited by arbitrary initial data. For models admitting only an unphysical mode solution, the evolutions do not show any tendency to oscillate with the respective frequency. For higher values of ll, it seems that in certain cases there are no mode solutions at all.Comment: Major revision, corrected results concerning realistic equations of state, now 17 pages, 11 figures, MNRAS typesettin
    • …
    corecore