36 research outputs found
Growth and yield performance of some exotic clones of Hevea brasiliensis in North Kerala region
The growth and yield performance of a set of exotic clones from Malaysia and Ivory Coast was evaluated in comparison with RRII 105, a popular high yielding indigenous clone, for their adaptability in the northern tract of Kerala. The region is characterised by absence of sufficient summer showers and relatively long dry spells. Analysis of growth up to 16 years after planting revealed significant clonal differences in growth pattern, only from the 10th year of planting. Girth and girth increment was the highest in IRCA 130, followed by PB 330. The lowest girth was observed in RRIM 703. The clone IRCA 130 also exhibited significantly high annual and summer yield followed by PB 255. Peak rubber yield was recorded in the month of September irrespective of clones. IRCA 130 showed significantly superior branching height and bole volume followed by PB 255. Incidence of tapping panel dryness (TPD) and pink disease in IRCA 130 was comparable to clone RRII 105. The suitability of the newly introduced clones for the region is discussed
Quasi-Normal Modes of Schwarzschild Anti-De Sitter Black Holes: Electromagnetic and Gravitational Perturbations
We study the quasi-normal modes (QNM) of electromagnetic and gravitational
perturbations of a Schwarzschild black hole in an asymptotically Anti-de Sitter
(AdS) spacetime. Some of the electromagnetic modes do not oscillate, they only
decay, since they have pure imaginary frequencies. The gravitational modes show
peculiar features: the odd and even gravitational perturbations no longer have
the same characteristic quasinormal frequencies. There is a special mode for
odd perturbations whose behavior differs completely from the usual one in
scalar and electromagnetic perturbation in an AdS spacetime, but has a similar
behavior to the Schwarzschild black hole in an asymptotically flat spacetime:
the imaginary part of the frequency goes as 1/r+, where r+ is the horizon
radius. We also investigate the small black hole limit showing that the
imaginary part of the frequency goes as r+^2. These results are important to
the AdS/CFT conjecture since according to it the QNMs describe the approach to
equilibrium in the conformal field theory.Comment: 2 figure
Temperature and Polarization Patterns in Anisotropic Cosmologies
We study the coherent temperature and polarization patterns produced in
homogeneous but anisotropic cosmological models. We show results for all
Bianchi types with a Friedman-Robertson-Walker limit (i.e. Types I, V,
VII, VII and IX) to illustrate the range of possible behaviour. We
discuss the role of spatial curvature, shear and rotation in the geodesic
equations for each model and establish some basic results concerning the
symmetries of the patterns produced. We also give examples of the
time-evolution of these patterns in terms of the Stokes parameters , and
.Comment: 24 pages, 7 Figures, submitted to JCAP. Revised version: numerous
references added, text rewritten, and errors corrected
Order parameter symmetry in ferromagnetic superconductors
We analyze the symmetry and the nodal structure of the superconducting order
parameter in a cubic ferromagnet, such as ZrZn. We demonstrate how the
order parameter symmetry evolves when the electromagnetic interaction of the
conduction electrons with the internal magnetic induction and the spin-orbit
coupling are taken into account. These interactions break the cubic symmetry
and lift the degeneracy of the order parameter. It is shown that the order
parameter which appears immediately below the critical temperature has two
components, and its symmetry is described by {\em co-representations} of the
magnetic point groups. This allows us to make predictions about the location of
the gap nodes.Comment: 12 pages, ReVTeX, submitted to PR
Absorption and quasinormal modes of classical fields propagating on 3D and 4D de Sitter spacetime
We extensively study the exact solutions of the massless Dirac equation in 3D
de Sitter spacetime that we published recently. Using the Newman-Penrose
formalism, we find exact solutions of the equations of motion for the massless
classical fields of spin s=1/2,1,2 and to the massive Dirac equation in 4D de
Sitter metric. Employing these solutions, we analyze the absorption by the
cosmological horizon and de Sitter quasinormal modes. We also comment on the
results given by other authors.Comment: 31 page
Diamagnetic Persistent Currents and Spontaneous Time-Reversal Symmetry Breaking in Mesoscopic Structures
Recently, new strongly interacting phases have been uncovered in mesoscopic
systems with chaotic scattering at the boundaries by two of the present authors
and R. Shankar. This analysis is reliable when the dimensionless conductance of
the system is large, and is nonperturbative in both disorder and interactions.
The new phases are the mesoscopic analogue of spontaneous distortions of the
Fermi surface induced by interactions in bulk systems and can occur in any
Fermi liquid channel with angular momentum . Here we show that the phase
with even has a diamagnetic persistent current (seen experimentally but
mysterious theoretically), while that with odd can be driven through a
transition which spontaneously breaks time-reversal symmetry by increasing the
coupling to dissipative leads.Comment: 4 pages, three eps figure
On the quasinormal modes of the de Sitter spacetime
Modifying a method by Horowitz and Hubeny for asymptotically anti-de Sitter
black holes, we establish the classical stability of the quasinormal modes of
the de Sitter spacetime. Furthermore using a straightforward method we
calculate the de Sitter quasinormal frequencies of the gravitational
perturbations and discuss some properties of the radial functions of these
quasinormal modes.Comment: 11 pages, 4 figure
Quasinormal modes of Schwarzschild black holes in four and higher dimensions
We make a thorough investigation of the asymptotic quasinormal modes of the
four and five-dimensional Schwarzschild black hole for scalar, electromagnetic
and gravitational perturbations. Our numerical results give full support to all
the analytical predictions by Motl and Neitzke, for the leading term. We also
compute the first order corrections analytically, by extending to higher
dimensions, previous work of Musiri and Siopsis, and find excellent agreement
with the numerical results. For generic spacetime dimension number D the
first-order corrections go as . This means that
there is a more rapid convergence to the asymptotic value for the five
dimensional case than for the four dimensional case, as we also show
numerically.Comment: 12 pages, 5 figures, RevTeX4. v2. Typos corrected, references adde
A Solvable Regime of Disorder and Interactions in Ballistic Nanostructures, Part I: Consequences for Coulomb Blockade
We provide a framework for analyzing the problem of interacting electrons in
a ballistic quantum dot with chaotic boundary conditions within an energy
(the Thouless energy) of the Fermi energy. Within this window we show that the
interactions can be characterized by Landau Fermi liquid parameters. When ,
the dimensionless conductance of the dot, is large, we find that the disordered
interacting problem can be solved in a saddle-point approximation which becomes
exact as (as in a large-N theory). The infinite theory shows a
transition to a strong-coupling phase characterized by the same order parameter
as in the Pomeranchuk transition in clean systems (a spontaneous
interaction-induced Fermi surface distortion), but smeared and pinned by
disorder. At finite , the two phases and critical point evolve into three
regimes in the plane -- weak- and strong-coupling regimes separated
by crossover lines from a quantum-critical regime controlled by the quantum
critical point. In the strong-coupling and quantum-critical regions, the
quasiparticle acquires a width of the same order as the level spacing
within a few 's of the Fermi energy due to coupling to collective
excitations. In the strong coupling regime if is odd, the dot will (if
isolated) cross over from the orthogonal to unitary ensemble for an
exponentially small external flux, or will (if strongly coupled to leads) break
time-reversal symmetry spontaneously.Comment: 33 pages, 14 figures. Very minor changes. We have clarified that we
are treating charge-channel instabilities in spinful systems, leaving
spin-channel instabilities for future work. No substantive results are
change
The Dependence of the Superconducting Transition Temperature of Organic Molecular Crystals on Intrinsically Non-Magnetic Disorder: a Signature of either Unconventional Superconductivity or Novel Local Magnetic Moment Formation
We give a theoretical analysis of published experimental studies of the
effects of impurities and disorder on the superconducting transition
temperature, T_c, of the organic molecular crystals kappa-ET_2X and beta-ET_2X
(where ET is bis(ethylenedithio)tetrathiafulvalene and X is an anion eg I_3).
The Abrikosov-Gorkov (AG) formula describes the suppression of T_c both by
magnetic impurities in singlet superconductors, including s-wave
superconductors and by non-magnetic impurities in a non-s-wave superconductor.
We show that various sources of disorder lead to the suppression of T_c as
described by the AG formula. This is confirmed by the excellent fit to the
data, the fact that these materials are in the clean limit and the excellent
agreement between the value of the interlayer hopping integral, t_perp,
calculated from this fit and the value of t_perp found from angular-dependant
magnetoresistance and quantum oscillation experiments. If the disorder is, as
seems most likely, non-magnetic then the pairing state cannot be s-wave. We
show that the cooling rate dependence of the magnetisation is inconsistent with
paramagnetic impurities. Triplet pairing is ruled out by several experiments.
If the disorder is non-magnetic then this implies that l>=2, in which case
Occam's razor suggests that d-wave pairing is realised. Given the proximity of
these materials to an antiferromagnetic Mott transition, it is possible that
the disorder leads to the formation of local magnetic moments via some novel
mechanism. Thus we conclude that either kappa-ET_2X and beta-ET_2X are d-wave
superconductors or else they display a novel mechanism for the formation of
localised moments. We suggest systematic experiments to differentiate between
these scenarios.Comment: 18 pages, 5 figure