13 research outputs found

    SMFC as a tool for the removal of hydrocarbons and metals in the marine environment: a concise research update

    Get PDF
    Marine pollution is becoming more and more serious, especially in coastal areas. Because of the sequestration and consequent accumulation of pollutants in sediments (mainly organic compounds and heavy metals), marine environment restoration cannot exempt from effective remediation of sediments themselves. It has been well proven that, after entering into the seawater, these pollutants are biotransformed into their metabolites, which may be more toxic than their parent molecules. Based on their bioavailability and toxic nature, these compounds may accumulate into the living cells of marine organisms. Pollutants bioaccumulation and biomagnification along the marine food chain lead to seafood contamination and human health hazards. Nowadays, different technologies are available for sediment remediation, such as physicochemical, biological, and bioelectrochemical processes. This paper gives an overview of the most recent techniques for marine sediment remediation while presenting sediment-based microbial fuel cells (SMFCs). We discuss the issues, the progress, and future perspectives of SMFC application to the removal of hydrocarbons and metals in the marine environment with concurrent energy production. We give an insight into the possible mechanisms leading to sediment remediation, SMFC energy balance, and future exploitation

    Use of Biochar-Based Cathodes and Increase in the Electron Flow by Pseudomonas aeruginosa to Improve Waste Treatment in Microbial Fuel Cells

    Get PDF
    In this paper, we tested the combined use of a biochar-based material at the cathode and of Pseudomonas aeruginosa strain in a single chamber, air cathode microbial fuel cells (MFCs) fed with a mix of shredded vegetable and phosphate buffer solution (PBS) in a 30% solid/liquid ratio. As a control system, we set up and tested MFCs provided with a composite cathode made up of a nickel mesh current collector, activated carbon and a single porous poly tetra fluoro ethylene (PTFE) diffusion layer. At the end of the experiments, we compared the performance of the two systems, in the presence and absence of P. aeruginosa, in terms of electric outputs. We also explored the potential reutilization of cathodes. Unlike composite material, biochar showed a life span of up to 3 cycles of 15 days each, with a pH of the feedstock kept in a range of neutrality. In order to relate the electric performance to the amount of solid substrates used as source of carbon and energy, besides of cathode surface, we referred power density (PD) and current density (CD) to kg of biomass used. The maximum outputs obtained when using the sole microflora were, on average, respectively 0.19 Wm−2kg−1 and 2.67 Wm−2kg−1 , with peaks of 0.32 Wm−2kg−1 and 4.87 Wm−2kg−1 of cathode surface and mass of treated biomass in MFCs with biochar and PTFE cathodes respectively. As to current outputs, the maximum values were 7.5 Am−2 kg−1 and 35.6 Am−2kg−1 in MFCs with biochar-based material and a composite cathode. If compared to the utilization of the sole acidogenic/acetogenic microflora in vegetable residues, we observed an increment of the power outputs of about 16.5 folds in both systems when we added P. aeruginosa to the shredded vegetables. Even though the MFCs with PTFE-cathode achieved the highest performance in terms of PD and CD, they underwent a fouling episode after about 10 days of operation, with a dramatic decrease in pH and both PD and CD. Our results confirm the potentialities of the utilization of biochar-based materials in waste treatment and bioenergy production

    Biohydrogen Production: Strategies to Improve Process Efficiency through Microbial Routes

    No full text
    The current fossil fuel-based generation of energy has led to large-scale industrial development. However, the reliance on fossil fuels leads to the significant depletion of natural resources of buried combustible geologic deposits and to negative effects on the global climate with emissions of greenhouse gases. Accordingly, enormous efforts are directed to transition from fossil fuels to nonpolluting and renewable energy sources. One potential alternative is biohydrogen (H2), a clean energy carrier with high-energy yields; upon the combustion of H2, H2O is the only major by-product. In recent decades, the attractive and renewable characteristics of H2 led us to develop a variety of biological routes for the production of H2. Based on the mode of H2 generation, the biological routes for H2 production are categorized into four groups: photobiological fermentation, anaerobic fermentation, enzymatic and microbial electrolysis, and a combination of these processes. Thus, this review primarily focuses on the evaluation of the biological routes for the production of H2. In particular, we assess the efficiency and feasibility of these bioprocesses with respect to the factors that affect operations, and we delineate the limitations. Additionally, alternative options such as bioaugmentation, multiple process integration, and microbial electrolysis to improve process efficiency are discussed to address industrial-level applications

    Biohydrogen Production: Strategies to Improve Process Efficiency through Microbial Routes

    No full text
    The current fossil fuel-based generation of energy has led to large-scale industrial development. However, the reliance on fossil fuels leads to the significant depletion of natural resources of buried combustible geologic deposits and to negative effects on the global climate with emissions of greenhouse gases. Accordingly, enormous efforts are directed to transition from fossil fuels to nonpolluting and renewable energy sources. One potential alternative is biohydrogen (H2), a clean energy carrier with high-energy yields; upon the combustion of H2, H2O is the only major by-product. In recent decades, the attractive and renewable characteristics of H2 led us to develop a variety of biological routes for the production of H2. Based on the mode of H2 generation, the biological routes for H2 production are categorized into four groups: photobiological fermentation, anaerobic fermentation, enzymatic and microbial electrolysis, and a combination of these processes. Thus, this review primarily focuses on the evaluation of the biological routes for the production of H2. In particular, we assess the efficiency and feasibility of these bioprocesses with respect to the factors that affect operations, and we delineate the limitations. Additionally, alternative options such as bioaugmentation, multiple process integration, and microbial electrolysis to improve process efficiency are discussed to address industrial-level applications

    Harvesting Energy Using Compost as a Source of Carbon and Electrogenic Bacteria

    No full text
    Compost is widely used to improve soil fertility for its chemical-physical properties, with particular regard to the abundance of humic substances. Compared to the untreated organic solid waste, the use of compost in Microbial Fuel Cells (MFCs) could offer different advantages like the strong reduction of fermentative processes. The use of compost in MFCs in combination with soil or mixed with other substrates had been reported by some researchers to improve the performance of MFCs fed with agro-industrial residues and plant-MFCs. In this chapter, we report the results of an experiment carried out using a compost of vegetable residues as feedstock in a single chamber, air cathode MFCs. We investigated the behaviour of two MFCs serially connected, the possibility to use compost as a long-term source of energy in MFCs, the influence of cathode surface /cell volume ratio on MFCs performance in terms of power and current density. Our results showed for MFCs serially connected a maximum PD and CD of 234 mW/m 2 and 1.6 A/m 2 respectively, with a maximum OCV of 557 mV. Unexpectedly, the compost-based MFCs kept significant electric outputs (854 mV, 467 mW/m 2 kg and 114 mA/m 2 kg) after being reactivated two years later its setup thus demonstrating its potential as long-term operation energy system

    Challenges in Microbial Fuel Cell and Future Scope

    No full text
    The imminent energy crisis due to reserved fossil fuel and global warming due to greenhouse gas emission warrant the necessity for environmentally friendly sources of energy. Fossil fuels adversely affect the nature due to the release of CO2 into the environment (Venkata Mohan et al. 2011; Venkateswar Reddy et al. 2011a; Kadier et al. 2016a, b). Hence the consumption of fossil fuels based energy sources has harshly threatened human life through its drastic consequences, such as global warming and environmental pollution. As a result, in the present global energy scenario, searching for other energy resources is necessary (Kadier et al. 2015; Chandrasekhar et al. 2015a; Venkata Mohan and Pandey 2013). Last few years, several researchers around the world have made remarkable efforts to find a solution for this energy crisis (Venkata Mohan et al. 2013). In this scenario, fuel cells are a unique addition to the list of alternative energy sources having a negligible CO2 emission. Production of electricity using microorganisms was firstly reported early in the last century (Potter 1911). Microbial fuel cell (MFC) have been considered as a bio-based reactor that modifies the chemical energy of substrate into electrical energy through biocatalytic action of exoelectrogenic microorganisms under anaerobic circumstances over sequences of metabolic reactions (Kondaveeti and Min 2015; Chandrasekhar et al. 2015b). MFC technology signifies an innovative approach of using microorganisms for bioelectricity generation by the oxidation of organic substrate varied from the synthetic substrate such as acetate, glucose to a complex mixture of the organic substrate including food, dairy, distillery, animal and domestic wastewater. In recent years, MFC technology has been developing as one of the popular wastewater treatment based technology to deliver clean water and green energy (Venkata Mohan and Chandrasekhar 2011a, b; Pant et al. 2012; Pandit et al. 2012a, b; Chandrasekhar et al. 2015b). These MFCs overtook other conventional technologies such as an aerated lagoon and anaerobic digester (Logan 2008). Unlike traditional fuel cells, one step conversion of carbon-rich organic waste as a potential substrate to generate bioelectricity in MFCs ensures better conversion capability. MFCs can evade extra gas treatment process due to its CO2 rich off-gas. Moreover, single chambered or open-air cathode MFCs do not need any external energy input. Hence, it can be advantageous for extensive application in locations lacking electrical amenities (Stams et al. 2006). This chapter stretches an account of the basic principles involved in the working of MFCs and the key applications, challenges and future scope of MFC technology, as it stands today

    Electro-Fermentation in Aid of Bioenergy and Biopolymers

    No full text
    The soaring levels of industrialization and rapid progress towards urbanization across the world have elevated the demand for energy besides generating a massive amount of waste. The latter is responsible for poisoning the ecosystem in an exponential manner, owing to the hazardous and toxic chemicals released by them. In the past few decades, there has been a paradigm shift from “waste to wealth”, keeping the value of high organic content available in the wastes of biological origin. The most practiced processes are that of anaerobic digestion, leading to the production of methane. However; such bioconversion has limited net energy yields. Industrial fermentation targeting value-added bioproducts such as—H2, butanediols; polyhydroxyalkanoates, citric acid, vitamins, enzymes, etc. from biowastes/lignocellulosic substrates have been planned to flourish in a multi-step process or as a “Biorefinery”. Electro-fermentation (EF) is one such technology that has attracted much interest due to its ability to boost the microbial metabolism through extracellular electron transfer during fermentation. It has been studied on various acetogens and methanogens, where the enhancement in the biogas yield reached up to 2-fold. EF holds the potential to be used with complex organic materials, leading to the biosynthesis of value-added products at an industrial scale

    Inorganic Carbon Assimilation and Electrosynthesis of Platform Chemicals in Bioelectrochemical Systems (BESs) Inoculated with Clostridium saccharoperbutylacetonicum N1-H4

    No full text
    The need for greener processes to satisfy the demand of platform chemicals together with the possibility of reusing CO2 from human activities has recently encouraged research on the set-up, optimization, and development of bioelectrochemical systems (BESs) for the electrosynthesis of organic compounds from inorganic carbon (CO2, HCO3-). In the present study, we tested the ability of Clostridium saccharoperbutylacetonicum N1-4 (DSMZ 14923) to produce acetate and D-3-hydroxybutyrate from inorganic carbon present in a CO2:N2 gas mix. At the same time, we tested the ability of a Shewanella oneidensis MR1 and Pseudomonas aeruginosa PA1430/CO1 consortium to provide reducing power to sustain carbon assimilation at the cathode. We tested the performance of three different systems with the same layouts, inocula, and media, but with the application of 1.5 V external voltage, of a 1000 Ω external load, and without any connection between the electrodes or external devices (open circuit voltage, OCV). We compared both CO2 assimilation rate and production of metabolites (formate, acetate 3-D-hydroxybutyrate) in our BESs with the values obtained in non-electrogenic control cultures and estimated the energy used by our BESs to assimilate 1 mol of CO2. Our results showed that C. saccharoperbutylacetonicum NT-1 achieved the maximum CO2 assimilation (95.5%) when the microbial fuel cells (MFCs) were connected to the 1000 Ω external resistor, with the Shewanella/Pseudomonas consortium as the only source of electrons. Furthermore, we detected a shift in the metabolism of C. saccharoperbutylacetonicum NT-1 because of its prolonged activity in BESs. Our results open new perspectives for the utilization of BESs in carbon capture and electrosynthesis of platform chemicals

    Biohydrogen production in microbial electrolysis cells from renewable resources

    No full text
    332Microbial electrolysis cell (MEC) is a novel bioelectrochemical device that produces hydrogen and value-added products from waste biomass or wastewaters. In recent years, the research interests in MECs have grown tremendously because of their high hydrogen conversion efficiency, low input energy requirement, and applicability to many organic feedstocks. Consequently, the MEC technology has been rapidly advancing. However, MECs are still in the early stages; several technical challenges remain prior to scale-up and their real-world application. Much work is needed on biofilm engineering, reactor architectures, and electrode materials to improve overall performances of system. This chapter presents an introduction to the MEC technology and its operating principle, electron transfer mechanism. Furthermore, the most crucial factors to enhance performance of MEC such as the MEC reactor design and materials are comprehensively reviewed. Finally, the main technical challenges and future research directions are discussed

    A comprehensive review on two-stage integrative schemes for the valorization of dark fermentative effluents

    No full text
    This review provides the alternative routes towards the valorization of dark H2 fermentation effluents that are mainly rich in volatile fatty acids such as acetate and butyrate. Various enhancement and alternative routes such as photo fermentation, anaerobic digestion, utilization of microbial electrochemical systems, and algal system towards the generation of bioenergy and electricity and also for efficient organic matter utilization are highlighted. What is more, various integration schemes and two-stage fermentation for the possible scale up are reviewed. Moreover, recent progress for enhanced performance towards waste stabilization and overall utilization of useful and higher COD present in the organic source into value-added products are extensively discussed
    corecore