3 research outputs found

    Bioengineering of Canopy Photosynthesis in Rice for Securing Global Food Security: A Critical Review

    No full text
    The emerging threat of climate change is posing a scientific conundrum for global food and nutritional security. As a primary staple food, half of the global human population is supported by rice crop. Thus, enhancing rice yield is highly critical to ensure food security. Photosynthesis is the defining physiological process of plants that determines maximum attainable yield. Efficiently capturing solar radiation and converting the carbon assimilates into rice grain is critical to achieve high yield. Genetic interventions to modify the plant architecture for enhanced light capture can improve rice yield significantly. Enhancement of cellular photosynthesis by synthetic biology approaches targeting important nodes of the light harvesting and carbon assimilation pathways are critical for breaking yield ceiling. The possible targets for improving photosynthesis include the light capture, chloroplast electron transport, Calvin cycle enzymes, sugar transport mechanisms, minimization of photorespiration, and improving source–sink relations. Conversion of C3 rice into a C4 type plant is also an option being vigorously pursued. Here, we review the determinants of canopy photosynthesis in rice with special reference to genetic factors and cellular photosynthetic capacity

    Application of thermal imaging and hyperspectral remote sensing for crop water deficit stress monitoring

    No full text
    Water deficit in crops induces a stress that may ultimately result in low production. Identification of response of genotypes towards water deficit stress is very crucial for plant phenotyping. The study was carried out with the objective to identify the response of different rice genotypes to water deficit stress. Ten rice genotypes were grown each under water deficit stress and well watered or nonstress conditions. Thermal images coupled with visible images were recorded to quantify the stress and response of genotypes towards stress, and relative water content (RWC) synchronized with image acquisition was also measured in the lab for rice leaves. Synced with thermal imaging, Canopy reflectance spectra from same genotype fields were also recorded. For quantification of water deficit stress, Crop Water Stress Index (CWSI) was computed and its mode values were extracted from processed thermal imageries. It was ascertained from observations that APO and Pusa Sugandha-5 genotypes exhibited the highest resistance to the water deficit stress or drought whereas CR-143, MTU-1010, and Pusa Basmati-1 genotypes ascertained the highest sensitiveness to the drought. The study reveals that there is an effectual relationship (R2 = 0.63) between RWC and CWSI. The relationship between canopy reflectance spectra and CWSI was also established through partial least square regression technique. A very efficient relationship (calibration R2 = 0.94 and cross-validation R2 = 0.71) was ascertained and 10 most optimal wavebands related to water deficit stress were evoked from hyperspectral data resampled at 5 nm wavelength gap. The identified ten most optimum wavebands can contribute in the quick detection of water deficit stress in crops. This study positively contributes towards the identification of drought tolerant and drought resistant genotypes of rice and may provide valuable input for the development of drought-tolerant rice genotypes in future

    Imaging Sensor-Based High-Throughput Measurement of Biomass Using Machine Learning Models in Rice

    No full text
    Phenomics technologies have advanced rapidly in the recent past for precision phenotyping of diverse crop plants. High-throughput phenotyping using imaging sensors has been proven to fetch more informative data from a large population of genotypes than the traditional destructive phenotyping methodologies. It provides accurate, high-dimensional phenome-wide big data at an ultra-super spatial and temporal resolution. Biomass is an important plant phenotypic trait that can reflect the agronomic performance of crop plants in terms of growth and yield. Several image-derived features such as area, projected shoot area, projected shoot area with height constant, estimated bio-volume, etc., and machine learning models (single or multivariate analysis) are reported in the literature for use in the non-invasive prediction of biomass in diverse crop plants. However, no studies have reported the best suitable image-derived features for accurate biomass prediction, particularly for fully grown rice plants (70DAS). In this present study, we analyzed a subset of rice recombinant inbred lines (RILs) which were developed from a cross between rice varieties BVD109 × IR20 and grown in sufficient (control) and deficient soil nitrogen (N stress) conditions. Images of plants were acquired using three different sensors (RGB, IR, and NIR) just before destructive plant sampling for the quantitative estimation of fresh (FW) and dry weight (DW). A total of 67 image-derived traits were extracted and classified into four groups, viz., geometric-, color-, IR- and NIR-related traits. We identified a multimodal trait feature, the ratio of PSA and NIR grey intensity as estimated from RGB and NIR sensors, as a novel trait for predicting biomass in rice. Among the 16 machine learning models tested for predicting biomass, the Bayesian regularized neural network (BRNN) model showed the maximum predictive power (R2 = 0.96 and 0.95 for FW and DW of biomass, respectively) with the lowest prediction error (RMSE and bias value) in both control and N stress environments. Thus, biomass can be accurately predicted by measuring novel image-based parameters and neural network-based machine learning models in rice
    corecore