2 research outputs found

    Human promoter genomic composition demonstrates non-random groupings that reflect general cellular function

    Get PDF
    BACKGROUND: The purpose of this study is to determine whether or not there exists nonrandom grouping of cis-regulatory elements within gene promoters that can be perceived independent of gene expression data and whether or not there is any correlation between this grouping and the biological function of the gene. RESULTS: Using ProSpector, a web-based promoter search and annotation tool, we have applied an unbiased approach to analyze the transcription factor binding site frequencies of 1400 base pair genomic segments positioned at 1200 base pairs upstream and 200 base pairs downstream of the transcriptional start site of 7298 commonly studied human genes. Partitional clustering of the transcription factor binding site composition within these promoter segments reveals a small number of gene groups that are selectively enriched for gene ontology terms consistent with distinct aspects of cellular function. Significance ranking of the class-determining transcription factor binding sites within these clusters show substantial overlap between the gene ontology terms of the transcriptions factors associated with the binding sites and the gene ontology terms of the regulated genes within each group. CONCLUSION: Thus, gene sorting by promoter composition alone produces partitions in which the "regulated" and the "regulators" cosegregate into similar functional classes. These findings demonstrate that the transcription factor binding site composition is non-randomly distributed between gene promoters in a manner that reflects and partially defines general gene class function

    Three microarray platforms: an analysis of their concordance in profiling gene expression

    Get PDF
    BACKGROUND: Microarrays for the analysis of gene expression are of three different types: short oligonucleotide (25–30 base), long oligonucleotide (50–80 base), and cDNA (highly variable in length). The short oligonucleotide and cDNA arrays have been the mainstay of expression analysis to date, but long oligonucleotide platforms are gaining in popularity and will probably replace cDNA arrays. As part of a validation study for the long oligonucleotide arrays, we compared and contrasted expression profiles from the three formats, testing RNA from six different cell lines against a universal reference standard. RESULTS: The three platforms had 6430 genes in common. In general, correlation of gene expression levels across the platforms was good when defined by concordance in the direction of expression difference (upregulation or downregulation), scatter plot analysis, principal component analysis, cell line correlation or quantitative RT-PCR. The overall correlations (r values) between platforms were in the range 0.7 to 0.8, as determined by analysis of scatter plots. When concordance was measured for expression ratios significant at p-values of <0.05 and at expression threshold levels of 1.5 and 2-fold, the agreement among the platforms was very high, ranging from 93% to 100%. CONCLUSION: Our results indicate that the long oligonucleotide platform is highly suitable for expression analysis and compares favorably with the cDNA and short oligonucleotide varieties. All three platforms can give similar and reproducible results if the criterion is the direction of change in gene expression and minimal emphasis is placed on the magnitude of change
    corecore