73 research outputs found

    Presentations & Paper

    Get PDF

    Strong Metal-Support Interactions: An Extra Layer of Complexity

    Get PDF
    Strong interactions between oxide supports and catalytic metal particles can lead to inhibitive oxide layers forming over the active metal catalyst. Now, adsorbate-induced metal–support interactions have been shown to lead to a porous overlayer in the Rh/TiO2 system that tunes catalyst activity, improving its selectivity for the partial reduction of CO2

    Low-Temperature Activation Conditions for PAMAM Dendrimer Templated Pt Nanoparticles

    Get PDF
    Surface immobilized polyamidoamine (PAMAM) dendrimer templated Pt nanoparticles were employed as precursors to heterogeneous catalysts. CO oxidation catalysis and in situ infrared spectroscopy were used to evaluate conditions for dendrimer removal. Infrared spectroscopy showed thatPAMAMdendrimer amide bonds begin decomposing at temperatures as low as 75 °C. Although the amide stretches are completely removed after 3 h of oxidation at 300 °C, 16 h were required to reach maximum catalytic activity. Further treatment under oxidizing or reducing atmospheres did not cause substantial changes in activity. Infrared spectroscopy of the activated materials indicated that organic residues, probably surface carboxylates, are formed during oxidation. These surface species passivate the Pt NPs, and their removal was required to fully activate the catalyst. Substantially less forcing activation conditions were possible by employing a CO/O2/He oxidation treatment. At appropriate temperatures, CO acts as a protecting group for the Pt surface, helping to prevent fouling of the nanoparticle by organic residues. CO oxidation catalysis and infrared spectroscopy of adsorbed CO indicated that the low temperature activation treatment yielded supported nanoparticles that were substantially similar to those prepared with more forcing conditions

    Adsorption of CO on Supported Gold Nanoparticle Catalysts: A Comparative Study

    Get PDF
    The adsorption of CO on three different gold nanoparticle catalysts supported on high surface area TiO2 was studied using infrared transmission spectroscopy at room temperature and CO pressures typically used in CO oxidation reactions. The three, real-world catalysts were Au catalysts synthesized in our laboratory from thiol monolayer protected clusters (MPCs) and two commercial catalysts from the World Gold Council (WGC and AuTEK). Within experimental reproducibility, the adsorption data for the three catalysts are indistinguishable. While showing approximately Langmuir behavior, the adsorption data also show coverage dependence, as others have observed for many catalyst systems. Two approaches were used to fit the data, a two-site model and a variable binding constant model. The two-site Langmuir model yielded strong (36%) and weak (64%) binding constants of 2740 and 146 atm-1, respectively. Alternatively, using a sliding-tangent Langmuir fit gave a variable binding constant of 2670-120 atm-1 at room temperature for coverage θ ) 0-0.8. The heat of adsorption was then extracted from the binding constants using a literature value for -TΔS. These values were determined as ΔH)-64 and -56 kJ/mol for strong and weak binding according to the two-site model and ΔH)-63 to -56 kJ/mol for coverage θ ) 0-0.8 for the variable binding constant model. These values agree well with literature values obtained (i) using supported catalysts under higher pressures and (ii) using model catalysts under higher pressures and ultrahigh vacuum conditions

    Tuning Supported Catalyst Reactivity with Dendrimer-Templated Pt-Cu Nanoparticles

    Get PDF
    The effects of particle composition on heterogeneous catalysis were studied using dendrimer-encapsulated nanoparticles (DENs) as precursors to supported Pt-Cu catalysts. Bimetallic Pt-Cu DENs with varying Pt/Cu ratios were prepared in an anaerobic aqueous solution and deposited onto a high-purity commercial alumina support. The dendrimer template was then thermally removed to yield supported nanoparticle catalysts, which were studied with toluene hydrogenation and CO oxidation catalysis as well as infrared spectroscopy of adsorbed CO. Incorporating Cu into Pt nanoparticles had opposite effects on the two test reactions. Cu acted as a mild promoter for CO oxidation catalysis, and the promoting effect was independent of the amount of Cu present. Conversely, Cu acted as a strong poison for toluene hydrogenation catalysis, and the normalized rate tracked inversely with Cu content. Infrared spectroscopy of the supported nanoparticles indicated that electronic effects (electron donation from Cu to Pt) were minimal for these materials. Consequently, the catalysis results are interpreted in terms of potential structural differences as a function of Cu incorporation and reaction conditions

    Air and Water Free Solid-Phase Synthesis of Thiol Stabilized Au Nanoparticles with Anchored, Recyclable Dendrimer Templates

    Get PDF
    Solid-phase synthetic templates for Au nanoparticles were developed using Merrifield resins and polyamidoamine (PAMAM) dendrimers. This synthetic scheme affords the opportunity to prepare metal nanoparticles in the absence of air and water, and it does not necessitate phase transfer agents that can be difficult to remove in subsequent steps. Amine-terminated generation 5 PAMAM (G5NH2) dendrimers were grafted to anhydride functionalized polystyrene resin beads and alkylated with 1,2-epoxydodecane to produce G5C12anch. The anchored dendrimers bound both CoII and AuIII salts from toluene solutions at ratios comparable to those of solution phase alkyl-terminated PAMAM dendrimers. The encapsulated AuIII salts could be reduced with NaBH4 to produce anchored dendrimer encapsulated nanoparticles (DENs). Treatment of the anchored DENs with decanethiol in toluene extracted the Au nanoparticles from the dendrimers as monolayer protected clusters (MPCs). After a brief NaCN etch, the anchored dendrimers were readily recycled and a subsequent synthesis of decanethiol Au MPCs was performed with comparable MPC yield and particle size distribution

    Synthesis and Characterization of Dendrimer Templated Supported Bimetallic Pt-Au Nanoparticles

    Get PDF
    Bimetallic dendrimer-stabilized nanoparticles (DSNs) were used to prepare supported Pt-Au catalysts within the bulk miscibility gap for this binary system. Hydroxy-terminated generation 5 PAMAM dendrimers were used to prepare Cu0 nanoparticles (NPs). The Cu0 NPs were subsequently used to reduce K2PtCl4 and HAuCl4, preparing stabilized bimetallic Pt-Au NPs with a 1:1 stoichiometry. The stabilized NPs were adsorbed onto a high surface area silica support and thermally activated to remove the dendrimers. Transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and infrared spectroscopy of adsorbed CO showed that this preparation route resulted in NPs in which the two metals are intimately mixed and that the majority of the bimetallic NPs were smaller than 3 nm. Further, the bimetallic NPs were highly active for CO oxidation catalysis near room temperature and showed evidence of CO induced restructuring at ambient temperatures

    Origin of Enantioselection in Chiral Alcohol Oxidation Catalyzed by Pd[(-)-sparteine]Cl2

    Get PDF
    A kinetic investigation into the origin of enantioselectivity for the Pd[(-)-sparteine]Cl2-catalyzed aerobic oxidative kinetic resolution (OKR) is reported. A mechanism to account for a newly discovered chloride dissociation from Pd[(-)-sparteine]Cl2 prior to alcohol binding is proposed. The mechanism includes (1) chloride dissociation from Pd[(-)-sparteine]Cl2 to form cationic Pd(-)-sparteine]Cl, (2) alcohol binding, (3) deprotonation of Pd-bound alcohol to form a Pd-alkoxide, and (4) â-hydride elimination of Pd-alkoxide to form ketone product and a Pd-hydride. Utilizing the addition of (-)-sparteine HCl to control the [Cl-] and [H+] and the resulting derived rate law, the key microscopic kinetic and thermodynamic constants were extracted for each enantiomer of sec-phenethyl alcohol. These constants allow for the successful simulation of the oxidation rate in the presence of exogenous (-)-sparteine HCl. A rate law for oxidation of the racemic alcohol was derived that allows for the successful prediction of the experimentally measured krel values when using the extracted constants. Besides a factor of 10 difference between the relative rates of â-hydride elimination for the enantiomers, the main enhancement in enantiodetermination results from a concentration effect of (-)-sparteine HCl and the relative rates of reprotonation of the diastereomeric Pd-alkoxides

    Dendrimer-Encapsulated Nanoparticle Precursors to Supported Platinum Catalysts

    Get PDF
    In this contribution, we report the successful preparation of supported metal catalysts using dendrimer-encapsulated Pt nanoparticles as metal precursors. Polyamidoamine (PAMAM) dendrimers were first used to template and stabilize Pt nanoparticles prepared in solution. These dendrimer-encapsulated nanoparticles were then deposited onto a commercial high surface area silica support and thermally activated to remove the organic dendrimer. The resulting materials are active oxidation and hydrogenation catalysts. The effects of catalyst preparation and activation on activity for toluene hydrogenation and CO oxidation catalysis are discussed

    CO Oxidation Over Au/TiO\u3csub\u3e2\u3c/sub\u3e Catalyst: Pretreatment Effects, Catalyst Deactivation, and Carbonates Production

    Get PDF
    A commercially available Au/TiO2 catalyst was subjected to a variety of thermal treatments in order to understand how variations in catalyst pretreatment procedures might affect CO oxidation catalysis. Catalytic activity was found to be inversely correlated to the temperature of the pretreatment. Infrared spectroscopy of adsorbed CO experiments, followed by a Temkin analysis of the data, indicated that the thermal treatments caused essentially no changes to the electronics of the Au particles; this, and a series of catalysis control experiments, and previous transmission electron microscopy (TEM) studies ruled out particle growth as a contributing factor to the activity loss. Fourier transform infrared (FTIR) spectroscopy showed that pretreating the catalyst results in water desorption from the surface, but the observable water loss was similar for all the treatments and could not be correlated with catalytic activity. A Michaelis–Menten kinetic treatment indicated that the main reason for deactivation is a loss in the number of active sites with little changes in their intrinsic activity. In situ FTIR experiments during CO oxidation showed extensive buildup of carbonate-like surface species when the pretreated catalysts were contacted with the feed gas. A semi-quantitative infrared spectroscopy method was developed for comparing the amount of carbonates present on each catalyst; results from these experiments showed a strong correlation between the steady-state catalytic activity and amount of surface carbonates generated during the initial moments of catalysis. Further, this experimental protocol was used to show that the carbonates reside on the titania support rather than on the Au, as there was no evidence that they poison Au–CO binding sites. The role of the carbonates in the reaction scheme, their potential role in catalyst deactivation, and the role of surface hydroxyls and water are discussed
    • …
    corecore