23 research outputs found

    What are the most promising new agents in myelodysplastic syndromes?

    No full text
    Purpose of review Myelodysplastic syndromes (MDS) are a diverse group of clonal disorders of hematopoietic stem or progenitor cells that represent the most common class of acquired bone marrow failure syndromes in adults. Despite significant improvement in the pathologic insight into this group of disorders, therapeutic options remain limited and allogeneic hematopoietic stem-cell transplantation is the only treatment that can induce long-term remission in patients with MDS. The goals of therapy for MDS are based on disease prognostication, with a focus of minimizing transfusion dependence and preserving quality of life in low-risk groups and preventing progression of disease to acute myeloid leukemia in high-risk groups. Given the dearth of approved treatment options, there is a marked need for novel therapies across the board, and there are several novel agents currently in the pipeline. Recent findings Among the promising agents with preclinical and early phase efficacy in higher risk MDS, apoptosis targeting with BCL-2 inhibitors have been a standout. There is also a keen interest in immunotherapy, and targeted agents (genetic, signaling pathways, bispecific antibodies, antibody-drug conjugates, and others described in this review). Summary In this review, we will highlight some of the promising new agents currently under investigation for the management of MDS

    Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes

    No full text
    Multiple centrosomes in tumor cells create the potential for multipolar divisions that can lead to aneuploidy and cell death. Nevertheless, many cancer cells successfully divide because of mechanisms that suppress multipolar mitoses. A genome-wide RNAi screen in Drosophila S2 cells and a secondary analysis in cancer cells defined mechanisms that suppress multipolar mitoses. In addition to proteins that organize microtubules at the spindle poles, we identified novel roles for the spindle assembly checkpoint, cortical actin cytoskeleton, and cell adhesion. Using live cell imaging and fibronectin micropatterns, we found that interphase cell shape and adhesion pattern can determine the success of the subsequent mitosis in cells with extra centrosomes. These findings may identify cancer-selective therapeutic targets: HSET, a normally nonessential kinesin motor, was essential for the viability of certain extra centrosome-containing cancer cells. Thus, morphological features of cancer cells can be linked to unique genetic requirements for survival
    corecore