9 research outputs found

    Measurement of hepatic insulin sensitivity early after the bypass of the proximal small bowel in humans

    Get PDF
    Objective: Unlike gastric banding or sleeve gastrectomy procedures, intestinal bypass procedures, and the Roux-en-Y gastric bypass (RYGB) in particular, lead to rapid improvements in glycaemia early after surgery. The bypass of the proximal small bowel may have weight loss and even caloric restriction independent glucose-lowering properties on hepatic insulin sensitivity. In this first in humans mechanistic study, we examined this hypothesis by investigating the early effects of the duodeno-jejunal bypass liner (DJBL; GI Dynamics, USA) on the hepatic insulin sensitivity using the gold standard euglycaemic hyperinsulinaemic clamp methodology. Method: Seven patients with obesity underwent measurement of hepatic insulin sensitivity at baseline, one week after a low-calorie liquid diet and after a further one week following insertion of the DJBL whilst on the same diet. Results: DJBL did not improve the insulin sensitivity of hepatic glucose production (HGP) beyond the improvements achieved with caloric restriction. Conclusions: Caloric restriction may be the predominant driver of early increases in hepatic insulin sensitivity after the endoscopic bypass of the proximal small bowel. The same mechanism may be at play after RYGB and explain, at least in part, the rapid improvements in glycaemia

    Real-time Camera Tracking in the Matris Project

    No full text
    In order to insert a virtual object into a TV image, the graphics system needs to know precisely how the camera is moving, so that the virtual object can be rendered in the correct place in every frame. Nowadays this can be achieved relatively easily in post-production, or in a studio equipped with a special tracking system. However, for live shooting on location, or in a studio that is not specially equipped, installing such a system can be difficult or uneconomic. To overcome these limitations, the MATRIS project is developing a real-time system for measuring the movement of a camera. The system uses image analysis to track naturally occurring features in the scene, and data from an inertial sensor. No additional sensors, special markers, or camera mounts are required. This paper gives an overview of the system and presents some results
    corecore