10 research outputs found

    Assessing the impacts of current and future changes of the planforms of river Brahmaputra on its land use-land cover

    No full text
    River bankline migration is a frequent phenomenon in the river of the floodplain region. Nowadays, channel dynamics-related changes in land use and land cover (LULC) are becoming a risk to the life and property of people living in the vicinity of rivers. A comprehensive evaluation of the causes and consequences of such changes is essential for better policy and decision-making for disaster risk reduction and management. The present study assesses the changes in the Brahmaputra River planform using the GIS-based Digital Shoreline Analysis System (DSAS) and relates it with the changing LULC of the floodplain evaluated using the CA-Markov model. In this study, the future channel of the Brahmaputra River and its flood plain’s future LULC were forecasted to pinpoint the erosion-vulnerable zone. Forty-eight years (1973–2021) of remotely sensed data were applied to estimate the rate of bankline migration. It was observed that the river’s erosion-accretion rate was higher in early times than in more recent ones. The left and right banks’ average shifting rates between 1973 and 1988 were −55.44 m/y and −56.79 m/y, respectively, while they were −17.25 m/y and −48.49 m/y from 2011 to 2021. The left bank of the river Brahmaputra had more erosion than the right, which indicates that the river is shifting in the leftward direction (Southward). In this river course, zone A (Lower course) and zone B (Middle course) were more adversely affected than zone C (Upper course). According to the predicted result, the left bank is more susceptible to bank erosion than the right bank (where the average rate of erosion and deposition was −72.23 m/y and 79.50 m/y, respectively). The left bank’s average rate of erosion was −111.22 m/y. The research assesses the LULC study in conjunction with river channel dynamics in vulnerable areas where nearby infrastructure and settlements were at risk due to channel migration. The degree of accuracy was verified using the actual bankline and predicted bankline, as well as the actual LULC map and anticipated LULC map. In more than 90% of cases, the bankline’s position and shape generally remain the same as the actual bankline. The overall, and kappa accuracy of all the LULC maps was more than 85%, which was suitable for the forecast. Moreover, chi-square (x2) result values for classified classes denoted the accuracy and acceptability of the CA-Markov model for predicting the LULC map. The results of this work aim to understand better the efficient hazard management strategy for the Brahmaputra River for hazard managers of the region using an automated prediction approach

    Land Use and Land Cover Change Monitoring and Prediction of a UNESCO World Heritage Site: Kaziranga Eco-Sensitive Zone Using Cellular Automata-Markov Model

    No full text
    The Kaziranga Eco-Sensitive Zone is located on the edge of the Eastern Himalayan biodiversity hotspot region. In 1985, the Kaziranga National Park (KNP) was declared a World Heritage Site by UNESCO. Nowadays, anthropogenic interference has created a significant negative impact on this national park. As a result, the area under natural habitat is gradually decreasing. The current study attempted to analyze the land use land cover (LULC) change in the Kaziranga Eco-Sensitive Zone using remote sensing data with CA-Markov models. Satellite remote sensing and the geographic information system (GIS) are widely used for monitoring, mapping, and change detection of LULC change dynamics. The changing rate was assessed using thirty years (1990–2020) of Landsat data. The study analyses the significant change in LULC, with the decrease in the waterbody, grassland and agricultural land, and the increase of sand or dry river beds, forest, and built-up areas. Between 1990 and 2020, waterbody, grassland, and agricultural land decreased by 18.4, 9.96, and 64.88%, respectively, while sand or dry river beds, forest, and built-up areas increased by 103.72, 6.96, and 89.03%, respectively. The result shows that the area covered with waterbodies, grassland, and agricultural land is mostly converted into built-up areas and sand or dry river bed areas. According to this study, by 2050, waterbodies, sand or dry river beds, and forests will decrease by 3.67, 3.91, and 7.11%, respectively; while grassland and agriculture will increase by up to 16.67% and 0.37%, respectively. The built-up areas are expected to slightly decrease during this period (up to 2.4%). The outcome of this study is expected to be useful for the long-term management of the Kaziranga Eco-Sensitive Zone

    Aerosol Characteristics and Their Impact on the Himalayan Energy Budget

    No full text
    The extensive work on the increasing burden of aerosols and resultant climate implications shows a matter of great concern. In this study, we investigate the aerosol optical depth (AOD) variations in the Indian Himalayan Region (IHR) between its plains and alpine regions and the corresponding consequences on the energy balance on the Himalayan glaciers. For this purpose, AOD data from Moderate Resolution Imaging Spectroradiometer (MODIS, MOD-L3), Aerosol Robotic Network (AERONET), India, and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) were analyzed. Aerosol radiative forcing (ARF) was assessed using the atmospheric radiation transfer model (RTM) integrated into AERONET inversion code based on the Discrete Ordinate Radiative Transfer (DISORT) module. Further, air mass trajectory over the entire IHR was analyzed using a hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. We estimated that between 2001 and 2015, the monthly average ARF at the surface (ARFSFC), top of the atmosphere (ARFTOA), and atmosphere (ARFATM) were −89.6 ± 18.6 Wm−2, −25.2 ± 6.8 Wm−2, and +64.4 ± 16.5 Wm−2, respectively. We observed that during dust aerosol transport days, the ARFSFC and TOA changed by −112.2 and −40.7 Wm−2, respectively, compared with low aerosol loading days, thereby accounting for the decrease in the solar radiation by 207% reaching the surface. This substantial decrease in the solar radiation reaching the Earth’s surface increases the heating rate in the atmosphere by 3.1-fold, thereby acting as an additional forcing factor for accelerated melting of the snow and glacier resources of the IHR

    Flood susceptibility assessment of the Agartala Urban Watershed, India, using Machine Learning Algorithm

    No full text
    Frequent floods are a severe threat to the well-being of people the world over. This is particularly severe in developing countries like India where tropical monsoon climate prevails. Recently, flood hazard susceptibility mapping has become a popular tool to mitigate the effects of this threat. Therefore, the present study utilized four distinctive Machine Learning algorithms i.e., K-Nearest Neighbor, Decision Tree, Naive Bayes, and Random Forest to estimate flood susceptibility zones in the Agartala Urban Watershed of Tripura, India. The latter experiences debilitating floods during the monsoon season. A multicollinearity test was conducted to examine the collinearity of the chosen flood conditioning factors, and it was seen that none of the factors were compromised by multicollinearity. Results showed that around three-fourths of the AUW area was classified as moderate to very high flood-prone zones, while over 20 percent was between low and very low flood-prone zones. The models applied performed well with ROC-AUC scores greater than 70 percent and MAE, MSE, and RMSE scores less than 30 percent. DT and RF algorithms were suggested for places with similar physical characteristics based on their outstanding performance and the training datasets. The study provides valuable insights to policymakers, administrative authorities, and local stakeholders to cope with floods and enhance flood prevention measures as a climate change adaptation strategy in the AUW

    Aerosol Characteristics and Their Impact on the Himalayan Energy Budget

    No full text
    The extensive work on the increasing burden of aerosols and resultant climate implications shows a matter of great concern. In this study, we investigate the aerosol optical depth (AOD) variations in the Indian Himalayan Region (IHR) between its plains and alpine regions and the corresponding consequences on the energy balance on the Himalayan glaciers. For this purpose, AOD data from Moderate Resolution Imaging Spectroradiometer (MODIS, MOD-L3), Aerosol Robotic Network (AERONET), India, and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) were analyzed. Aerosol radiative forcing (ARF) was assessed using the atmospheric radiation transfer model (RTM) integrated into AERONET inversion code based on the Discrete Ordinate Radiative Transfer (DISORT) module. Further, air mass trajectory over the entire IHR was analyzed using a hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. We estimated that between 2001 and 2015, the monthly average ARF at the surface (ARFSFC), top of the atmosphere (ARFTOA), and atmosphere (ARFATM) were −89.6 ± 18.6 Wm−2, −25.2 ± 6.8 Wm−2, and +64.4 ± 16.5 Wm−2, respectively. We observed that during dust aerosol transport days, the ARFSFC and TOA changed by −112.2 and −40.7 Wm−2, respectively, compared with low aerosol loading days, thereby accounting for the decrease in the solar radiation by 207% reaching the surface. This substantial decrease in the solar radiation reaching the Earth’s surface increases the heating rate in the atmosphere by 3.1-fold, thereby acting as an additional forcing factor for accelerated melting of the snow and glacier resources of the IHR

    Modelling on assessment of flood risk susceptibility at the Jia Bharali River basin in Eastern Himalayas by integrating multicollinearity tests and geospatial techniques

    No full text
    Climate change and anthropogenic factors have exacerbated flood risks in many regions across the globe, including theHimalayan foothill region in India. The Jia Bharali River basin, situated in this vulnerable area, frequently experienceshigh-magnitude floods, causing significant damage to the environment and local communities. Developing accurate andreliable flood susceptibility models is crucial for effective flood prevention, management, and adaptation strategies. In thisstudy, we aimed to generate a comprehensive flood susceptibility zone model for the Jia Bharali catchment by integratingstatistical methods with expert knowledge-based mathematical models. We applied four distinct models, including the FrequencyRatio model, Fuzzy Logic (FL) model, Multi-criteria Decision Making based Analytical Hierarchy Process model,and Fuzzy Analytical Hierarchy Process model, to evaluate the flood susceptibility of the basin. The results revealed thatapproximately one-third of the Jia Bharali basin area fell within moderate to very high flood-prone zones. In contrast, over50% of the area was classified as low to very low flood-prone zones. The applied models demonstrated strong performance,with ROC-AUC scores exceeding 70% and MAE, MSE, and RMSE scores below 30%. FL and AHP were recommendedfor application among the models in areas with similar physiographic characteristics due to their exceptional performanceand the training datasets. This study offers crucial insights for policymakers, regional administrative authorities, environmentalists,and engineers working in the Himalayan foothill region. By providing a robust flood susceptibility model, theresearch enhances flood prevention efforts and management, thereby serving as a vital climate change adaptation strategyfor the Jia Bharali River basin and similar regions. The findings also have significant implications for disaster risk reductionand sustainable development in vulnerable areas, contributing to the global efforts towards achieving the United Nations'Sustainable Development Goals
    corecore