38 research outputs found

    āļāļēāļĢāļœāļĨāļīāļ•āđ€āļ‹āļĨāļĨāđŒāļ•āđ‰āļ™āļāļģāđ€āļ™āļīāļ”āļ•āļąāļ§āļ­āđˆāļ­āļ™āļŦāļ™āļđāļˆāļēāļāđ€āļ‹āļĨāļĨāđŒāļ•āļąāļ§āļ­āđˆāļ­āļ™āļĢāļ°āļĒāļ°āļāđˆāļ­āļ™āļāļąāļ‡āļ•āļąāļ§

    Get PDF
    āļ§āļīāļ—āļĒāļēāļ™āļīāļžāļ™āļ˜āđŒ (āļ§āļ—.āļ”.)--āļĄāļŦāļēāļ§āļīāļ—āļĒāļēāļĨāļąāļĒāđ€āļ—āļ„āđ‚āļ™āđ‚āļĨāļĒāļĩāļŠāļļāļĢāļ™āļēāļĢāļĩ,255

    āļāļēāļĢāđ‚āļ„āļĨāļ™āļ™āļīāđˆāļ‡āļ•āļąāļ§āļ­āđˆāļ­āļ™āđāļĄāļ§āđ‚āļ”āļĒāđƒāļŠāđ‰āđ€āļ‹āļĨāļĨāđŒāđ„āļŸāđ‚āļšāļĢāļšāļĨāļēāļŠāļˆāļēāļāđƒāļšāļŦāļđāđāļĨāļ°āđ€āļ‹āļĨāļĨāđŒāđāļāļĢāļ™āļđāđ‚āļĨāļ‹āļēāđ€āļ›āđ‡āļ™āđ€āļ‹āļĨāļĨāđŒāļ•āđ‰āļ™āđāļšāļš

    Get PDF

    OGT and OGA gene-edited human induced pluripotent stem cells for dissecting the functional roles of O-GlcNAcylation in hematopoiesis

    Get PDF
    Hematopoiesis continues throughout life to produce all types of blood cells from hematopoietic stem cells (HSCs). Metabolic state is a known regulator of HSC self-renewal and differentiation, but whether and how metabolic sensor O-GlcNAcylation, which can be modulated via an inhibition of its cycling enzymes O-GlcNAcase (OGA) and O-GlcNAc transferase (OGT), contributes to hematopoiesis remains largely unknown. Herein, isogenic, single-cell clones of OGA-depleted (OGAi) and OGT-depleted (OGTi) human induced pluripotent stem cells (hiPSCs) were successfully generated from the master hiPSC line MUSIi012-A, which were reprogrammed from CD34+ hematopoietic stem/progenitor cells (HSPCs) containing epigenetic memory. The established OGAi and OGTi hiPSCs exhibiting an increase or decrease in cellular O-GlcNAcylation concomitant with their loss of OGA and OGT, respectively, appeared normal in phenotype and karyotype, and retained pluripotency, although they may favor differentiation toward certain germ lineages. Upon hematopoietic differentiation through mesoderm induction and endothelial-to-hematopoietic transition, we found that OGA inhibition accelerates hiPSC commitment toward HSPCs and that disruption of O-GlcNAc homeostasis affects their commitment toward erythroid lineage. The differentiated HSPCs from all groups were capable of giving rise to all hematopoietic progenitors, thus confirming their functional characteristics. Altogether, the established single-cell clones of OGTi and OGAi hiPSCs represent a valuable platform for further dissecting the roles of O-GlcNAcylation in blood cell development at various stages and lineages of blood cells. The incomplete knockout of OGA and OGT in these hiPSCs makes them susceptible to additional manipulation, i.e., by small molecules, allowing the molecular dynamics studies of O-GlcNAcylation

    Monkey hybrid stem cells develop cellular features of Huntington's disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pluripotent stem cells that are capable of differentiating into different cell types and develop robust hallmark cellular features are useful tools for clarifying the impact of developmental events on neurodegenerative diseases such as Huntington's disease. Additionally, a Huntington's cell model that develops robust pathological features of Huntington's disease would be valuable for drug discovery research.</p> <p>Results</p> <p>To test this hypothesis, a pluripotent Huntington's disease monkey hybrid cell line (TrES1) was established from a tetraploid Huntington's disease monkey blastocyst generated by the fusion of transgenic Huntington's monkey skin fibroblast and a wild-type non-transgenic monkey oocyte. The TrES1 developed key Huntington's disease cellular pathological features that paralleled neural development. It expressed mutant huntingtin and stem cell markers, was capable of differentiating to neural cells, and developed teratoma in severely compromised immune deficient (SCID) mice. Interestingly, the expression of mutant htt, the accumulation of oligomeric mutant htt and the formation of intranuclear inclusions paralleled neural development <it>in vitro </it>, and even mutant htt was ubiquitously expressed. This suggests the development of Huntington's disease cellular features is influenced by neural developmental events.</p> <p>Conclusions</p> <p>Huntington's disease cellular features is influenced by neural developmental events. These results are the first to demonstrate that a pluripotent stem cell line is able to mimic Huntington's disease progression that parallels neural development, which could be a useful cell model for investigating the developmental impact on Huntington's disease pathogenesis.</p

    A tudor domain protein SPINDLIN1 interacts with the mRNA-binding protein SERBP1 and is involved in mouse oocyte meiotic resumption

    Get PDF
    Mammalian oocytes are arrested at prophase I of meiosis, and resume meiosis prior to ovulation. Coordination of meiotic arrest and resumption is partly dependent on the post-transcriptional regulation of maternal transcripts. Here, we report that, SPINDLIN1 (SPIN1), a maternal protein containing Tudor-like domains, interacts with a known mRNA-binding protein SERBP1, and is involved in regulating maternal transcripts to control meiotic resumption. Mouse oocytes deficient for Spin1 undergo normal folliculogenesis, but are defective in resuming meiosis. SPIN1, via its Tudor-like domain, forms a ribonucleoprotein complex with SERBP1, and regulating mRNA stability and/or translation. The mRNA for the cAMP-degrading enzyme, PDE3A, is reduced in Spin1 mutant oocytes, possibly contributing to meiotic arrest. Our study demonstrates that Spin1 regulates maternal transcripts post-transcriptionally and is involved in meiotic resumption.Ting Gang Chew, Anne Peaston, Ai Khim Lim, Chanchao Lorthongpanich, Barbara B. Knowles, Davor Solte

    Role of YAP as a Mechanosensing Molecule in Stem Cells and Stem Cell-Derived Hematopoietic Cells

    No full text
    Yes-associated protein (YAP) and WW domain-containing transcription regulator protein 1 (WWTR1, also known as TAZ) are transcriptional coactivators in the Hippo signaling pathway. Both are well-known regulators of cell proliferation and organ size control, and they have significant roles in promoting cell proliferation and differentiation. The roles of YAP and TAZ in stem cell pluripotency and differentiation have been extensively studied. However, the upstream mediators of YAP and TAZ are not well understood. Recently, a novel role of YAP in mechanosensing and mechanotransduction has been reported. The present review updates information on the regulation of YAP by mechanical cues such as extracellular matrix stiffness, fluid shear stress, and actin cytoskeleton tension in stem cell behaviors and differentiation. The review explores mesenchymal stem cell fate decisions, pluripotent stem cells (PSCs), self-renewal, pluripotency, and differentiation to blood products. Understanding how cells sense their microenvironment or niche and mimic those microenvironments in vitro could improve the efficiency of producing stem cell products and the efficacy of the products

    Generation of a human iPSC cell line (MUSIi017-A) from a donor with O negative blood type

    No full text
    The Rh-negative type O blood group (O Rh-) is considered a universal donor for emergency blood transfusions. Due to the constant shortage of this rare blood group, the production of blood cells from iPSCs derived from the O Rh- donor could potentially serve as a limitless blood source for transfusions. In this report, we establish a MUSIi017-A iPSC line from peripheral blood mononuclear cells of a healthy donor with the O Rh- blood group. The established iPSC line exhibited a normal karyotype, showed identical STR compared to donor peripheral blood mononuclear cells, and could differentiate to all three germ layers

    Distinctive Roles of YAP and TAZ in Human Endothelial Progenitor Cells Growth and Functions

    No full text
    The hippo signaling pathway plays an essential role in controlling organ size and balancing tissue homeostasis. Its two main effectors, yes-associated protein (YAP) and WW domain-containing transcription regulator 1, WWTR1 or TAZ, have also been shown to regulate endothelial cell functions and angiogenesis. In this study, the functions of YAP and TAZ in human endothelial progenitor cells (EPCs) were investigated by a loss-of-function study using CRISPR/Cas9-mediated gene knockdown (KD). Depletion of either YAP or TAZ reduced EPC survival and impaired many of their critical functions, including migration, invasion, vessel-formation, and expression of pro-angiogenic genes. Notably, TAZ-KD EPCs exhibited more severe phenotypes in comparison to YAP-KD EPCs. Moreover, the conditioned medium derived from TAZ-KD EPCs reduced the survivability of human lung cancer cells and increased their sensitivity to chemotherapeutic agents. The overexpression of either wild-type or constitutively active TAZ rescued the impaired phenotypes of TAZ-KD EPCs and restored the expression of pro-angiogenic genes in those EPCs. In summary, we demonstrate the crucial role of Hippo signaling components, YAP and TAZ, in controlling several aspects of EPC functions that can potentially be used as a drug target to enhance EPC functions in patients

    Inhibition of LATS kinases reduces tumorigenicity and increases the sensitivity of human chronic myelogenous leukemia cells to imatinib

    No full text
    Abstract Chronic myelogenous leukemia (CML) is a clonal hematologic malignancy of the myeloid lineage caused by the oncogenic BCR/ABL fusion protein that promotes CML cell proliferation and protects them against drug-induced apoptosis. In this study, we determine LATS1 and LATS2 expression in CML cells derived from patients who are resistant to imatinib (IM) treatment. Significant upregulation of LATS1 and LATS2 was found in these CML patients compared to healthy donors. To further explore whether the expression of LATS1/2 contributes to the IM-resistant phenotype, IM-resistant CML cell lines generated by culturing CML-derived erythroblastic K562 cells in increasing concentrations of IM were used as in vitro models. Up-regulation of LATS1 and LATS2 was observed in IM-resistant K562 cells. Reduction of LATS using either Lats-IN-1 (TRULI), a specific LATS inhibitor, or shRNA targeting LATS1/2 significantly reduced clonogenicity, increased apoptosis and induced differentiation of K562 cells to late-stage erythroid cells. Furthermore, depletion of LATS1 and LATS2 also increased the sensitivity of K562 cells to IM. Taken together, our results suggest that LATS could be one of the key factors contributing to the rapid proliferation, reduced apoptosis, and IM resistance of CML cells. Targeting LATS could be a promising treatment to enhance the therapeutic effect of a conventional BCR/ABL tyrosine kinase inhibitor such as IM
    corecore