32 research outputs found

    First report of blaOXA-181-carrying IncX3 plasmids in multidrug-resistant Enterobacter hormaechei and Serratia nevei recovered from canine and feline opportunistic infections.

    Get PDF
    Whole-genome sequence analysis of six Enterobacter hormaechei and two Serratia nevei strains, using a hybrid assembly of Illumina and Oxford Nanopore Technologies sequencing, revealed the presence of the epidemic blaOXA-181-carrying IncX3 plasmids co-harboring qnrS1 and ∆ere(A) genes, as well as multiple multidrug resistance (MDR) plasmids disseminating in all strains, originated from dogs and cats in Thailand. The subspecies and sequence types (ST) of the E. hormaechei strains recovered from canine and feline opportunistic infections included E. hormaechei subsp. xiangfangensis ST171 (n = 3), ST121 (n = 1), and ST182 (n = 1), as well as E. hormaechei subsp. steigerwaltii ST65 (n = 1). Five of the six E. hormaechei strains harbored an identical 51,479-bp blaOXA-181-carrying IncX3 plasmid. However, the blaOXA-181 plasmid (pCUVET22-969.1) of the E. hormaechei strain CUVET22-969 presented a variation due to the insertion of ISKpn74 and ISSbo1 into the virB region. Additionally, the blaOXA-181 plasmids of S. nevei strains were nearly identical to the others at the nucleotide level, with ISEcl1 inserted upstream of the qnrS1 gene. The E. hormaechei and S. nevei lineages from canine and feline origins might acquire the epidemic blaOXA-181-carrying IncX3 and MDR plasmids, which are shared among Enterobacterales, contributing to the development of resistance. These findings suggest the spillover of significant OXA-181-encoding plasmids to these bacteria, causing severe opportunistic infections in dogs and cats in Thailand. Surveillance and effective hygienic practice, especially in hospitalized animals and veterinary hospitals, should be urgently implemented to prevent the spread of these plasmids in healthcare settings and communities.IMPORTANCEblaOXA-181 is a significant carbapenemase-encoding gene, usually associated with an epidemic IncX3 plasmid found in Enterobacterales worldwide. In this article, we revealed six carbapenemase-producing (CP) Enterobacter hormaechei and two CP Serratia nevei strains harboring blaOXA-181-carrying IncX3 and multidrug resistance plasmids recovered from dogs and cats in Thailand. The carriage of these plasmids can promote extensively drug-resistant properties, limiting antimicrobial treatment options in veterinary medicine. Since E. hormaechei and S. nevei harboring blaOXA-181-carrying IncX3 plasmids have not been previously reported in dogs and cats, our findings provide the first evidence of dissemination of the epidemic plasmids in these bacterial species isolated from animal origins. Pets in communities can serve as reservoirs of significant antimicrobial resistance determinants. This situation places a burden on antimicrobial treatment in small animal practice and poses a public health threat

    Genomic insights into methicillin-resistant Staphylococcus pseudintermedius isolates from dogs and humans of the same sequence types reveals diversity in prophages and pathogenicity islands.

    Get PDF
    Methicillin-resistant Staphylococcus pseudintermedius (MRSP) is an important opportunistic pathogenic bacterium of dogs that also occasionally colonize and infect humans. However, whether MRSP can adapt to human hosts is not clear and whole genome sequences of MRSP from humans are still limited. Genomic comparative analyses of 3 couples of isolates from dogs (n = 3) and humans (n = 3) belonging to ST45, ST112, and ST181, the dominant clones in Thailand were conducted to determine the degree of similarities between human and animal MRSP of a same ST. Among eight prophages, three prophages associated with the leucocidins genes (lukF/S-I), φVB88-Pro1, φVB16-Pro1 and φAP20-Pro1, were distributed in the human MRSPs, while their remnants, φAH18-Pro1, were located in the dog MRSPs. A novel composite pathogenicity island, named SpPI-181, containing two integrase genes was identified in the ST181 isolates. The distribution of the integrase genes of the eight prophages and SpPI-181 was also analysed by PCR in 77 additional MRSP isolates belonging to different STs. The PCR screen revealed diversity in prophage carriage, especially in ST45 isolates. Prophage φAK9-Pro1 was only observed in ST112 isolates from dogs and SpPI-181 was found associated with ST181 clonal lineage. Among the 3 couple of isolates, ST45 strains showed the highest number of single nucleotide polymorphisms (SNP) in their core genomes (3,612 SNPs). The genomic diversity of ST45 isolates suggested a high level of adaptation that may lead to different host colonization of successful clones. This finding provided data on the genomic differences of MRSP associated with colonization and adaption to different hosts

    Macrococcus canis contains recombinogenic methicillin resistance elements and the mecB plasmid found in Staphylococcus aureus.

    No full text
    OBJECTIVES To analyse the genetic context of mecB in two Macrococcus canis strains from dogs, compare the mecB-containing elements with those found in other Macrococcus and Staphylococcus species, and identify possible mobilizable mecB subunits. METHODS Whole genomes of the M. canis strains Epi0076A and KM0218 were sequenced using next-generation sequencing technologies. Multiple PCRs and restriction analysis confirmed structures of mecB-containing elements, circularization and recombination of mecB subunits. RESULTS Both M. canis strains contained novel composite pseudo (Ψ) staphylococcal cassette chromosome mec (SCCmec) elements. Integration site sequences for SCC flanked and subdivided composite ΨSCCmecEpi0076A (69569 bp) into ΨSCC1Epi0076A-ΨSCCmecEpi0076A-ΨSCC2Epi0076A and composite ΨSCCmecKM0218 (24554 bp) into ΨSCCKM0218-ΨSCCmecKM0218. Putative γ-haemolysin genes (hlgB and hlgC) were found at the 3' end of both composite elements. ΨSCCmecKM0218 contained a complete mecB gene complex (mecIm-mecR1m-mecB-blaZm) downstream of a new IS21-family member (ISMaca1). ΨSCCmecEpi0076A carried a blaZm-deleted mecB gene complex similar to that reported in 'Macrococcus goetzii' CCM4927T. A second mecB gene was found on the 81325 bp MDR plasmid pKM0218 in KM0218. This plasmid contained a complete Tn6045-associated mecB gene complex distinct from that of ΨSCCmecKM0218. pKM0218 was almost identical to the mecB-containing plasmid recently reported in Staphylococcus aureus (overall 99.96% nucleotide identity). Mobilization of mecB within an unconventional circularizable structure was observed in Epi0076A as well as chromosomal plasmid insertion via recombination of mecB operons in KM0218. CONCLUSIONS Our findings provide evidence of both the continuing evolution of mecB-containing elements in macrococci and M. canis as a potential source of the mecB-containing plasmid found in staphylococci

    Methicillin-Resistant Staphylococcus aureus Clonal Complex 398 as a Major MRSA Lineage in Dogs and Cats in Thailand

    No full text
    The aim of this study was to present molecular and antimicrobial resistance characteristics of methicillin-resistant Staphylococcus aureus (MRSA) clonal complex (CC) 398 isolated from diseased dogs and cats in Thailand. A total of 20 MRSA isolates of 134 Staphylococcus aureus isolated from canine and feline clinical samples during 2017–2020 were CC398, consisting of sequence type (ST) 398 (18 isolates), ST5926 (1 isolate), and ST6563 (1 isolate) by multilocus sequence typing. spa t034 and staphylococcal cassette chromosome mec (SCCmec) V were predominantly associated with ST398. Intraclonal differentiation was present by additional spa (t1255, t4653), non-detectable spa, composite SCCmec with a hybrid of ccrA1B1+ccrC and class A mec complex, and DNA fingerprints by pulsed-field gel electrophoresis. The isolates essentially carried antimicrobial resistance genes, mediating multiple resistance to β-lactams (mecA, blaZ), tetracyclines [tet(M)], aminoglycosides [aac(6′)-Ie-aph(2′)-Ia], and trimethoprim (dfr). Livestock-associated MRSA ST398 resistance genes including lnu(B), lsa(E), spw, fexA, and tet(L) were heterogeneously found and lost in subpopulation, with the absence or presence of additional erm(A), erm(B), and ileS2 genes that corresponded to resistance phenotypes. As only a single CC398 was detected with the presence of intraclonal variation, CC398 seems to be the successful MRSA clone colonizing in small animals as a pet-associated MRSA in Thailand

    Characterization of a Novel Composite Staphylococcal Cassette Chromosome mec in Methicillin-Resistant Staphylococcus pseudintermedius from Thailand.

    Get PDF
    A novel staphylococcal cassette chromosome mec (SCCmec) composite island (SCCmecAI16-SCCczrAI16-CI) was identified in Staphylococcus pseudintermedius. Four integration site sequences for SCC subdivided the 60,734-bp island into 41,232-bp SCCmecAI16, 19,400-bp SCCczrAI16, and 102-bp SCC-likeAI16 elements. SCCmecAI16 represents a new combination of ccrA1B3 genes with a class A mec complex. SCCczrAI16 contains ccrA1B6 and genes related to restriction modification and heavy metal resistance. SCCmecAI16-SCCczrAI16-CI was found in methicillin-resistant S. pseudintermedius sequence type 112 (ST112) and ST111 isolated from dogs and veterinarians in Thailand

    Methicillin-Resistant <i>Staphylococcus aureus</i> Clonal Complex 398 as a Major MRSA Lineage in Dogs and Cats in Thailand

    No full text
    The aim of this study was to present molecular and antimicrobial resistance characteristics of methicillin-resistant Staphylococcus aureus (MRSA) clonal complex (CC) 398 isolated from diseased dogs and cats in Thailand. A total of 20 MRSA isolates of 134 Staphylococcus aureus isolated from canine and feline clinical samples during 2017–2020 were CC398, consisting of sequence type (ST) 398 (18 isolates), ST5926 (1 isolate), and ST6563 (1 isolate) by multilocus sequence typing. spa t034 and staphylococcal cassette chromosome mec (SCCmec) V were predominantly associated with ST398. Intraclonal differentiation was present by additional spa (t1255, t4653), non-detectable spa, composite SCCmec with a hybrid of ccrA1B1+ccrC and class A mec complex, and DNA fingerprints by pulsed-field gel electrophoresis. The isolates essentially carried antimicrobial resistance genes, mediating multiple resistance to β-lactams (mecA, blaZ), tetracyclines [tet(M)], aminoglycosides [aac(6′)-Ie-aph(2′)-Ia], and trimethoprim (dfr). Livestock-associated MRSA ST398 resistance genes including lnu(B), lsa(E), spw, fexA, and tet(L) were heterogeneously found and lost in subpopulation, with the absence or presence of additional erm(A), erm(B), and ileS2 genes that corresponded to resistance phenotypes. As only a single CC398 was detected with the presence of intraclonal variation, CC398 seems to be the successful MRSA clone colonizing in small animals as a pet-associated MRSA in Thailand
    corecore