19 research outputs found

    Intradermal influenza vaccination of healthy adults using a new microinjection system: a 3-year randomised controlled safety and immunogenicity trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intradermal vaccination provides direct and potentially more efficient access to the immune system via specialised dendritic cells and draining lymphatic vessels. We investigated the immunogenicity and safety during 3 successive years of different dosages of a trivalent, inactivated, split-virion vaccine against seasonal influenza given intradermally using a microinjection system compared with an intramuscular control vaccine.</p> <p>Methods</p> <p>In a randomised, partially blinded, controlled study, healthy volunteers (1150 aged 18 to 57 years at enrolment) received three annual vaccinations of intradermal or intramuscular vaccine. In Year 1, subjects were randomised to one of three groups: 3 μg or 6 μg haemagglutinin/strain/dose of inactivated influenza vaccine intradermally, or a licensed inactivated influenza vaccine intramuscularly containing 15 μg/strain/dose. In Year 2 subjects were randomised again to one of two groups: 9 μg/strain/dose intradermally or 15 μg intramuscularly. In Year 3 subjects were randomised a third time to one of two groups: 9 μg intradermally or 15 μg intramuscularly. Randomisation lists in Year 1 were stratified for site. Randomisation lists in Years 2 and 3 were stratified for site and by vaccine received in previous years to ensure the inclusion of a comparable number of subjects in a vaccine group at each centre each year. Immunogenicity was assessed 21 days after each vaccination. Safety was assessed throughout the study.</p> <p>Results</p> <p>In Years 2 and 3, 9 μg intradermal was comparably immunogenic to 15 μg intramuscular for all strains, and both vaccines met European requirements for annual licensing of influenza vaccines. The 3 μg and 6 μg intradermal formulations were less immunogenic than intramuscular 15 μg. Safety of the intradermal and intramuscular vaccinations was comparable in each year of the study. Injection site erythema and swelling was more common with the intradermal route.</p> <p>Conclusion</p> <p>An influenza vaccine with 9 μg of haemagglutinin/strain given using an intradermal microinjection system showed comparable immunogenic and safety profiles to a licensed intramuscular vaccine, and presents a promising alternative to intramuscular vaccination for influenza for adults younger than 60 years.</p> <p>Trial registration</p> <p>Clinicaltrials.gov NCT00703651.</p

    Grading of degenerative disk disease and functional impairment: imaging versus patho-anatomical findings

    No full text
    Degenerative instability affecting the functional spinal unit is discussed as a cause of symptoms. The value of imaging signs for assessing the resulting functional impairment is still unclear. To determine the relationship between slight degrees of degeneration and function, we performed a biomechanical study with 18 multisegmental (L2-S2) human lumbar cadaveric specimens. The multidirectional spinal deformation was measured during the continuous application of pure moments of flexion/extension, bilateral bending and rotation in a spine tester. The three flexibility parameters neutral zone, range of motion and neutral zone ratio were evaluated. Different grading systems were used: (1) antero-posterior and lateral radiographs (degenerative disk disease) (2) oblique radiographs (facet joint degeneration) (3) macroscopic and (4) microscopic evaluation. The most reliable correlation was between the grading of microscopic findings and the flexibility parameters; the imaging evaluation was not as informative

    Calcification in the ovine intervertebral disc: a model of hydroxyapatite deposition disease

    No full text
    The study design included a multidisciplinary examination of the mineral phase of ovine intervertebral disc calcifications. The objective of the study was to investigate the mineral phase and its mechanisms of formation/association with degeneration in a naturally occurring animal model of disc calcification. The aetiology of dystrophic disc calcification in adult humans is unknown, but occurs as a well-described clinical disorder with hydroxyapatite as the single mineral phase. Comparable but age-related pathology in the sheep could serve as a model for the human disorder. Lumbar intervertebral discs (n = 134) of adult sheep of age 6 years (n = 4), 8 years (n = 12) and 11 years (n = 2) were evaluated using radiography, morphology, scanning and transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray powder diffraction, histology, immunohistology and proteoglycan analysis. Half of the 6-year, 84% of the 8-year and 86% of the 11-year-old discs had calcific deposits. These were not well delineated by plain radiography. They were either: (a) punctate deposits in the outer annulus, (b) diffuse deposits in the transitional zone or inner annulus fibrosus with occasional deposits in the nucleus, or (c) large deposits in the transitional zone extending variably into the nucleus. Their maximal incidence was in the lower lumbar discs (L4/5–L6/7) with no calcification seen in the lumbosacral or lower thoracic discs. All deposits were hydroxyapatite with large crystallite sizes (800–1,300 Å) compared to cortical bone (300–600 Å). No type X-collagen, osteopontin or osteonectin were detected in calcific deposits, although positive staining for bone sialoprotein was evident. Calcified discs had less proteoglycan of smaller hydrodynamic size than non-calcified discs. Disc calcification in ageing sheep is due to hydroxyapatite deposition. The variable, but large, crystal size and lack of protein markers indicate that this does not occur by an endochondral ossification-like process. The decrease in disc proteoglycan content and size suggests that calcification may precede or predispose to disc degeneration in ageing sheep
    corecore