4 research outputs found

    Simulation of the FCC-hh collimation system

    No full text
    International audienceThe proposed CERN FCC-hh proton-proton collider will operate at unprecedented per-particle (50 TeV) and total stored beam energies (8.4 GJ). These high energies create the requirement for an efficient collimation system in order to protect the accelerator components and experiments. In order to verify the performance of proposed collimation system designs, loss map simulations have been performed using the code Merlin. Results for the current baseline layout are presented for both betatron and off-momentum loss maps

    Characterization of the Electron Beam Visualization Stations of the ThomX Accelerator

    No full text
    International audienceWe present an overview of the diagnostics screens stations - named SSTs - of the ThomX compact Compton source. ThomX is a compact light source based on Compton backscattering. It features a linac and a storage ring in which the electrons have an energy of 50 MeV. Each SST is composed of three screens, a YAG:Ce screen and an Optical Transition Radiation (OTR) screen for transverse measurements and a calibration target for magnification and resolution characterisation. The optical system is based on commercial lenses that have been reverse-engineered. An Arduino is used to control both the aperture and the focus remotely, while the magnification must be modified using an external motor. We report on the overall performance of the station as measured during the first steps of beam commissioning and on the optical system remote operations

    Short Bunch Experiment at EXALT Facility

    No full text
    International audienceNowdays, different applications required short bunches, with low energy spread and low emittances. On EXALT facility, we perform an experiment with a short (few100 femtosecond) laser pulse on a photocathode in a 3 GHz RF gun. We perform the measurement of the single photon emission process with a copper cathode. We show that the longitudinal photoinjector model via transfer matrix is suitable for the reconstruction of the bunch duration even in short pulse mode with an increased accurracy charge below 20 pC. We clearly measure the parabolic profile in the energy spectrum resulting from blow out phenomena at the cathode due to strong space charge forces. Measurements are also compared with the Astra simulations

    First Electron Beam of the ThomX Project

    No full text
    International audienceThe ThomX accelerator beam commissioning phase is now ongoing. The 50 MeV electron accelerator complex consists of a 50 MeV linear accelerator and a pulsed mode ring. It is dedicated to the production of X-rays by Compton backscattering. The performance of the beam at the interaction point is demanding in terms of emittance, charge, energy spread and transverse size. The choice of an undamped ring in pulsed mode also stresses the performance of the beam from the linear accelerator. Thus, commissioning includes a beam based alignment and a simulation/experimental matching procedure to reach the X-ray beam requirements. We will present the first 50 MeV electron beam obtained with ThomX and its characteristics
    corecore