24 research outputs found

    Controlled overexpression of Pax6 in vivo negatively autoregulates the Pax6 locus, causing cell-autonomous defects of late cortical progenitor proliferation with little effect on cortical arealization

    Get PDF
    Levels of expression of the transcription factor Pax6 vary throughout corticogenesis in a rostro-lateral(high) to caudo-medial(low) gradient across the cortical proliferative zone. Previous loss-of-function studies have indicated that Pax6 is required for normal cortical progenitor proliferation, neuronal differentiation, cortical lamination and cortical arealization, but whether and how its level of expression affects its function is unclear. We studied the developing cortex of PAX77 YAC transgenic mice carrying several copies of the human PAX6 locus with its full complement of regulatory regions. We found that PAX77 embryos express Pax6 in a normal spatial pattern, with levels up to three times higher than wild type. By crossing PAX77 mice with a new YAC transgenic line that reports Pax6 expression (DTy54), we showed that increased expression is limited by negative autoregulation. Increased expression reduces proliferation of late cortical progenitors specifically, and analysis of PAX77↔wild-type chimeras indicates that the defect is cell autonomous. We analyzed cortical arealization in PAX77 mice and found that, whereas the loss of Pax6 shifts caudal cortical areas rostrally, Pax6 overexpression at levels predicted to shift rostral areas caudally has very little effect. These findings indicate that Pax6 levels are stabilized by autoregulation, that the proliferation of cortical progenitors is sensitive to altered Pax6 levels and that cortical arealization is not

    A Concerted Action of Engrailed and Gooseberry-Neuro in Neuroblast 6-4 Is Triggering the Formation of Embryonic Posterior Commissure Bundles

    Get PDF
    One challenging question in neurogenesis concerns the identification of cues that trigger axonal growth and pathfinding to form stereotypic neuronal networks during the construction of a nervous system. Here, we show that in Drosophila, Engrailed (EN) and Gooseberry-Neuro (GsbN) act together as cofactors to build the posterior commissures (PCs), which shapes the ventral nerve cord. Indeed, we show that these two proteins are acting together in axon growth and midline crossing, and that this concerted action occurs at early development, in neuroblasts. More precisely, we identified that their expressions in NB 6-4 are necessary and sufficient to trigger the formation of the PCs, demonstrating that segmentation genes such as EN and GsbN play a crucial role in the determination of NB 6-4 in a way that will later influence growth and guidance of all the axons that form the PCs. We also demonstrate a more specific function of GsbN in differentiated neurons, leading to fasciculations between axons, which might be required to obtain PC mature axon bundles

    Low incidence of SARS-CoV-2, risk factors of mortality and the course of illness in the French national cohort of dialysis patients

    Get PDF

    Molecular Characterization of the Rhesus Rhadinovirus (RRV) ORF4 Gene and the RRV Complement Control Protein It Encodes

    Get PDF
    The diversity of viral strategies to modulate complement activation indicates that this component of the immune system has significant antiviral potential. One example is the Kaposi's sarcoma-associated herpesvirus (KSHV) complement control protein (KCP), which inhibits progression of the complement cascade. Rhesus rhadinovirus (RRV), like KSHV, is a member of the subfamily Gammaherpesvirinae and currently provides the only in vivo model of KSHV pathobiology in primates. In the present study, we characterized the KCP homologue encoded by RRV, RRV complement control protein (RCP). Two strains of RRV have been sequenced to date (H26-95 and 17577), and the RCPs they encode differ substantially in structure: RCP from strain H26-95 has four complement control protein (CCP) domains, whereas RCP from strain 17577 has eight CCP domains. Transcriptional analyses of the RCP gene (ORF4, referred to herein as RCP) in infected rhesus macaque fibroblasts mapped the ends of the transcripts of both strains. They revealed that H26-95 encodes a full-length, unspliced RCP transcript, while 17577 RCP generates a full-length unspliced mRNA and two alternatively spliced transcripts. Western blotting confirmed that infected cells express RCP, and immune electron microscopy disclosed this protein on the surface of RRV virions. Functional studies of RCP encoded by both RRV strains revealed their ability to suppress complement activation by the classical (antibody-mediated) pathway. These data provide the foundation for studies into the biological significance of gammaherpesvirus complement regulatory proteins in a tractable, non-human primate model

    Suppression of antigen-specific T cell responses by the Kaposi's sarcoma-associated herpesvirus viral OX2 protein and its cellular orthologue, CD200

    No full text
    Regulating appropriate activation of the immune response in the healthy host despite continual immune surveillance dictates that immune responses must be either self-limiting and therefore negatively regulated following their activation or prevented from developing inappropriately. In the case of antigen-specific T cells, their response is attenuated by several mechanisms, including ligation of CTLA-4 and PD-1. Through the study of the viral OX2 (vOX2) immunoregulator encoded by Kaposi's sarcoma-associated herpesvirus (KSHV), we have identified a T cell-attenuating role both for this protein and for CD200, a cellular orthologue of the viral vOX2 protein. In vitro, antigen-presenting cells (APC) expressing either native vOX2 or CD200 suppressed two functions of cognate antigen-specific T cell clones: gamma interferon (IFN-γ) production and mobilization of CD107a, a cytolytic granule component and measure of target cell killing ability. Mechanistically, vOX2 and CD200 expression on APC suppressed the phosphorylation of ERK1/2 mitogen-activated protein kinase in responding T cells. These data provide the first evidence for a role of both KSHV vOX2 and cellular CD200 in the negative regulation of antigen-specific T cell responses. They suggest that KSHV has evolved to harness the host CD200-based mechanism of attenuation of T cell responses to facilitate virus persistence and dissemination within the infected individual. Moreover, our studies define a new paradigm in immune modulation by viruses: the provision of a negative costimulatory signal to T cells by a virus-encoded orthologue of CD200

    Loss of the Nrf2 transcription factor causes a marked reduction in constitutive and inducible expression of the glutathione S-transferase Gsta1, Gsta2, Gstm1, Gstm2, Gstm3 and Gstm4 genes in the livers of male and female mice.

    No full text
    Mice that lack the Nrf2 basic-region leucine-zipper transcription factor are more sensitive than wild-type (WT) animals to the cytotoxic and genotoxic effects of foreign chemicals and oxidants. To determine the basis for the decrease in tolerance of the Nrf2 homozygous null mice to xenobiotics, enzyme assay, Western blotting and gene-specific real-time PCR (TaqMan) have been used to examine the extent to which hepatic expression of GSH-dependent enzymes is influenced by the transcription factor. The amounts of protein and mRNA for class Alpha, Mu and Pi glutathione S-transferases were compared between WT and Nrf2 knockout (KO) mice of both sexes under both constitutive and inducible conditions. Among the class Alpha and class Mu transferases, constitutive expression of Gsta1, Gsta2, Gstm1, Gstm2, Gstm3, Gstm4 and Gstm6 subunits was reduced in the livers of Nrf2 mutant mice to between 3% and 60% of that observed in WT mice. Induction of these subunits by butylated hydroxyanisole (BHA) was more marked in WT female mice than in WT male mice. TaqMan analyses showed the increase in transferase mRNA caused by BHA was attenuated in Nrf2(-/-) mice, with the effect being most apparent in the case of Gsta1, Gstm1 and Gstm3. Amongst class Pi transferase subunits, the constitutive hepatic level of mRNA for Gstp1 and Gstp2 was not substantially affected in the KO mice, but their induction by BHA was dependent on Nrf2; this was more obvious in female mutant mice than in male mice. Nrf2 KO mice exhibited reduced constitutive expression of the glutamate cysteine ligase catalytic subunit, and, to a lesser extent, the expression of glutamate cysteine ligase modifier subunit. Little variation was observed in the levels of glutathione synthase in the different mouse lines. Thus the increased sensitivity of Nrf2(-/-) mice to xenobiotics can be partly attributed to a loss in constitutive expression of multiple GSH-dependent enzymes, which causes a reduction in intrinsic detoxification capacity in the KO animal. These data also indicate that attenuated induction of GSH-dependent enzymes in Nrf2(-/-) mice probably accounts for their failure to adapt to chronic exposure to chemical and oxidative stress
    corecore