53,056 research outputs found

    Statistics Of The Burst Model At Super-critical Phase

    Full text link
    We investigate the statistics of a model of type-I X-ray burst [Phys. Rev. E, {\bf 51}, 3045 (1995)] in its super-critical phase. The time evolution of the burnable clusters, places where fire can pass through, is studied using simple statistical arguments. We offer a simple picture for the time evolution of the percentage of space covered by burnable clusters. A relation between the time-average and the peak percentage of space covered by burnable clusters is also derived.Comment: 11 Pages in Revtex 3.0. Two figures available by sending request to [email protected]

    A Solvable Model of Two-Dimensional Dilaton-Gravity Coupled to a Massless Scalar Field

    Get PDF
    We present a solvable model of two-dimensional dilaton-gravity coupled to a massless scalar field. We locally integrate the field equations and briefly discuss the properties of the solutions. For a particular choice of the coupling between the dilaton and the scalar field the model can be interpreted as the two-dimensional effective theory of 2+1 cylindrical gravity minimally coupled to a massless scalar field.Comment: 6 pages, RevTeX, to be published in Phys. Rev.

    Calibration of the ER-2 meteorological measurement system

    Get PDF
    The Meteorological Measurement System (MMS) on the high altitude ER-2 aircraft was developed specifically for atmospheric research. The MMS provides accurate measurements of pressure, temperature, wind vector, position (longitude, latitude, altitude), pitch, roll, heading, angle of attack, angle of sideslip, true airspeed, aircraft eastward velocity, northward velocity, vertical acceleration, and time, at a sample rate of 5/s. MMS data products are presented in the form of either 5 or 1 Hz time series. The 1 Hz data stream, generally used by ER-2 investigators, is obtained from the 5 Hz data stream by filtering and desampling. The method of measurement of the meteorological parameters is given and the results of their analyses are discussed

    Theory of enhanced performance emerging in a sparsely-connected competitive population

    Full text link
    We provide an analytic theory to explain Anghel et al.'s recent numerical finding whereby a maximum in the global performance emerges for a sparsely-connected competitive population [Phys. Rev. Lett. 92, 058701 (2004)]. We show that the effect originates in the highly-correlated dynamics of strategy choice, and can be significantly enhanced using a simple modification to the model.Comment: This revised version will appear in PRE as a Rapid Com
    corecore