46,984 research outputs found

    Axiomatic Holonomy Maps and Generalized Yang-Mills Moduli Space

    Full text link
    This article is a follow-up of ``Holonomy and Path Structures in General Relativity and Yang-Mills Theory" by Barrett, J. W. (Int.J.Theor.Phys., vol.30, No.9, 1991). Its main goal is to provide an alternative proof of this part of the reconstruction theorem which concerns the existence of a connection. A construction of connection 1-form is presented. The formula expressing the local coefficients of connection in terms of the holonomy map is obtained as an immediate consequence of that construction. Thus the derived formula coincides with that used in "On Loop Space Formulation of Gauge Theories" by Chan, H.-M., Scharbach, P. and Tsou S.T. (Ann.Phys., vol.167, 454-472, 1986). The reconstruction and representation theorems form a generalization of the fact that the pointed configuration space of the classical Yang-Mills theory is equivalent to the set of all holonomy maps. The point of this generalization is that there is a one-to-one correspondence not only between the holonomy maps and the orbits in the space of connections, but also between all maps from the loop space on MM to group GG fulfilling some axioms and all possible equivalence classes of P(M,G)P(M,G) bundles with connection, where the equivalence relation is defined by bundle isomorphism in a natural way.Comment: amslatex, 7 pages, no figure

    Modeling of secondary organic aerosol yields from laboratory chamber data

    Get PDF
    Laboratory chamber data serve as the basis for constraining models of secondary organic aerosol (SOA) formation. Current models fall into three categories: empirical two-product (Odum), product-specific, and volatility basis set. The product-specific and volatility basis set models are applied here to represent laboratory data on the ozonolysis of α-pinene under dry, dark, and low-NOx conditions in the presence of ammonium sulfate seed aerosol. Using five major identified products, the model is fit to the chamber data. From the optimal fitting, SOA oxygen-to-carbon (O/C) and hydrogen-to-carbon (H/C) ratios are modeled. The discrepancy between measured H/C ratios and those based on the oxidation products used in the model fitting suggests the potential importance of particle-phase reactions. Data fitting is also carried out using the volatility basis set, wherein oxidation products are parsed into volatility bins. The product-specific model is most likely hindered by lack of explicit inclusion of particle-phase accretion compounds. While prospects for identification of the majority of SOA products for major volatile organic compounds (VOCs) classes remain promising, for the near future empirical product or volatility basis set models remain the approaches of choice

    A study of inner zone electron data and their comparison with trapped radiation models

    Get PDF
    A summary and intercomparison of recent inner radiation zone electron data are presented. The morphology of the inner radiation zone is described and the data compared with the current generation of inner zone trapped electron models. An analytic representation of the inner zone equatorial pitch angle distribution is presented. This model was based upon data from eight satellites and was used to reduce all data to the form of equatorial flux. Although no Starfish-free high energy electron measurements were available from the inner portion of the inner radiation zone, it was found that the AE-6 model provided a good description of the present solar maximum environment

    Roles of dark energy perturbations in the dynamical dark energy models: Can we ignore them?

    Full text link
    We show the importance of properly including the perturbations of the dark energy component in the dynamical dark energy models based on a scalar field and modified gravity theories in order to meet with present and future observational precisions. Based on a simple scaling scalar field dark energy model, we show that observationally distinguishable substantial differences appear by ignoring the dark energy perturbation. By ignoring it the perturbed system of equations becomes inconsistent and deviations in (gauge-invariant) power spectra depend on the gauge choice.Comment: 5 pages, 4 figure

    Low Temperature Susceptibility of the Noncentrosymmetric Superconductor CePt_3Si

    Full text link
    We report ac susceptibility measurements of polycrystalline CePt_3Si down to 60 mK and in applied fields up to 9 T. In zero field, a full Meissner state emerges at temperatures T/Tc < 0.3, where Tc=0.65 K is the onset transition temperature. Though transport measurements show a relatively high upper critical field Bc2 ~ 4-5 T, the low temperature susceptibility, \chi', is quite fragile to applied field, with \chi' diminishing rapidly in fields of a few kG. Interestingly, the field dependence of \chi' is well described by the power law, 4\pi\chi'=(B/B_c)^{1/2}, where Bc is the field at which the onset of resistance is observed in transport measurements.Comment: 5 figure

    Stabilization of the p-wave superfluid state in an optical lattice

    Full text link
    It is hard to stabilize the p-wave superfluid state of cold atomic gas in free space due to inelastic collisional losses. We consider the p-wave Feshbach resonance in an optical lattice, and show that it is possible to have a stable p-wave superfluid state where the multi-atom collisional loss is suppressed through the quantum Zeno effect. We derive the effective Hamiltonian for this system, and calculate its phase diagram in a one-dimensional optical lattice. The results show rich phase transitions between the p-wave superfluid state and different types of insulator states induced either by interaction or by dissipation.Comment: 5 pages, 5 figure

    In situ observations of ClO in the Antarctic: Evidence for chlorine catalyzed destruction of ozone

    Get PDF
    Results from a series of 12 ER-2 aircraft flights into the Antarctic polar vortex are summarized. These in situ data define the spatial and temporal distribution of ClO as the aircraft flew at an altitude of approx. 18 km from Punta Arenas (54 deg S latitude) to the base of the Palmer Peninsula (72 deg S latitude), executed a rapid descent to approx. 13 km, turned north and climbed bach to approximately 18 km, returning to Punta Arenas. A general pattern in the ClO distribution is reported: mixing ratios of approximately 10 ppt are found at altitude in the vicinity of 55 deg S increasing to 50 ppt at 60 degrees S. In the vicinity of 65 deg S latitude a steep gradient in the ClO mixing ratio is observed. At a fixed potential temperature, the ClO mixing ratio through this sharp transition increases by an order of magnitude within a very few degrees of latitude, thus defining the edge of the chemical containment vessel. From the edge of that containment vessel to the southern extension of the flights, 72 deg S, a dome of slowly increasing ClO best describes the distribution. Conclusion are drawn from the data

    Wormholes in String Theory

    Get PDF
    A wormhole is constructed by cutting and joining two spacetimes satisfying the low energy string equations with a dilaton field. In spacetimes described by the "string metric" the dilaton energy-momentum tensor need not satisfy the weak or dominant energy conditions. In the cases considered here the dilaton field violates these energy conditions and is the source of the exotic matter required to maintain the wormhole. There is also a surface stress-energy, that must be produced by additional matter, where the spacetimes are joined. It is shown that wormholes can be constructed for which this additional matter satisfies the weak and dominant energy conditions, so that it could be a form of "normal" matter. Charged dilaton wormholes with a coupling between the dilaton and the electromagnetic field that is more general than in string theory are also briefly discussed.Comment: 9 pages, LaTex, submitted to Phys. Rev.
    corecore