57,059 research outputs found
Modeling of secondary organic aerosol yields from laboratory chamber data
Laboratory chamber data serve as the basis for constraining models of secondary organic aerosol (SOA) formation. Current models fall into three categories: empirical two-product (Odum), product-specific, and volatility basis set. The product-specific and volatility basis set models are applied here to represent laboratory data on the ozonolysis of α-pinene under dry, dark, and low-NOx conditions in the presence of ammonium sulfate seed aerosol. Using five major identified products, the model is fit to the chamber data. From the optimal fitting, SOA oxygen-to-carbon (O/C) and hydrogen-to-carbon (H/C) ratios are modeled. The discrepancy between measured H/C ratios and those based on the oxidation products used in the model fitting suggests the potential importance of particle-phase reactions. Data fitting is also carried out using the volatility basis set, wherein oxidation products are parsed into volatility bins. The product-specific model is most likely hindered by lack of explicit inclusion of particle-phase accretion compounds. While prospects for identification of the majority of SOA products for major volatile organic compounds (VOCs) classes remain promising, for the near future empirical product or volatility basis set models remain the approaches of choice
Investigations into the Sarcomeric Protein and Ca2+-Regulation Abnormalities Underlying Hypertrophic Cardiomyopathy in Cats (Felix catus).
Hypertrophic cardiomyopathy (HCM) is the most common single gene inherited cardiomyopathy. In cats (Felix catus) HCM is even more prevalent and affects 16% of the outbred population and up to 26% in pedigree breeds such as Maine Coon and Ragdoll. Homozygous MYBPC3 mutations have been identified in these breeds but the mutations in other cats are unknown. At the clinical and physiological level feline HCM is closely analogous to human HCM but little is known about the primary causative mechanism. Most identified HCM causing mutations are in the genes coding for proteins of the sarcomere. We therefore investigated contractile and regulatory proteins in left ventricular tissue from 25 cats, 18 diagnosed with HCM, including a Ragdoll cat with a homozygous MYBPC3 R820W, and 7 non-HCM cats in comparison with human HCM (from septal myectomy) and donor heart tissue. Myofibrillar protein expression was normal except that we observed 20–44% MyBP-C haploinsufficiency in 5 of the HCM cats. Troponin extracted from 8 HCM and 5 non-HCM cat hearts was incorporated into thin filaments and studied by in vitro motility assay. All HCM cat hearts had a higher (2.06 ± 0.13 fold) Ca2+-sensitivity than non-HCM cats and, in all the HCM cats, Ca2+-sensitivity was not modulated by troponin I phosphorylation. We were able to restore modulation of Ca2+-sensitivity by replacing troponin T with wild-type protein or by adding 100 μM Epigallocatechin 3-gallate (EGCG). These fundamental regulatory characteristics closely mimic those seen in human HCM indicating a common molecular mechanism that is independent of the causative mutation. Thus, the HCM cat is a potentially useful large animal model
Energetic Components of Cooperative Protein Folding
A new lattice protein model with a four-helix bundle ground state is analyzed
by a parameter-space Monte Carlo histogram technique to evaluate the effects of
an extensive variety of model potentials on folding thermodynamics. Cooperative
helical formation and contact energies based on a 5-letter alphabet are found
to be insufficient to satisfy calorimetric and other experimental criteria for
two-state folding. Such proteinlike behaviors are predicted, however, by models
with polypeptide-like local conformational restrictions and
environment-dependent hydrogen bonding-like interactions.Comment: 11 pages, 4 postscripts figures, Phys. Rev. Lett. (in press
Role of aldehyde chemistry and NO_x concentrations in secondary organic aerosol formation
Aldehydes are an important class of products from atmospheric oxidation of hydrocarbons. Isoprene (2-methyl-1,3-butadiene), the most abundantly emitted atmospheric non-methane hydrocarbon, produces a significant amount of secondary organic aerosol (SOA) via methacrolein (a C_4-unsaturated aldehyde) under urban high-NO_x conditions. Previously, we have identified peroxy methacryloyl nitrate (MPAN) as the important intermediate to isoprene and methacrolein SOA in this NO_x regime. Here we show that as a result of this chemistry, NO_2 enhances SOA formation from methacrolein and two other α, β-unsaturated aldehydes, specifically acrolein and crotonaldehyde, a NO_x effect on SOA formation previously unrecognized. Oligoesters of dihydroxycarboxylic acids and hydroxynitrooxycarboxylic acids are observed to increase with increasing NO_2/NO ratio, and previous characterizations are confirmed by both online and offline high-resolution mass spectrometry techniques. Molecular structure also determines the amount of SOA formation, as the SOA mass yields are the highest for aldehydes that are α, β-unsaturated and contain an additional methyl group on the α-carbon. Aerosol formation from 2-methyl-3-buten-2-ol (MBO232) is insignificant, even under high-NO_2 conditions, as PAN (peroxy acyl nitrate, RC(O)OONO_2) formation is structurally unfavorable. At atmospherically relevant NO_2/NO ratios (3–8), the SOA yields from isoprene high-NO_x photooxidation are 3 times greater than previously measured at lower NO_2/NO ratios. At sufficiently high NO_2 concentrations, in systems of α, β-unsaturated aldehydes, SOA formation from subsequent oxidation of products from acyl peroxyl radicals+NO_2 can exceed that from RO_2+HO_2 reactions under the same inorganic seed conditions, making RO_2+NO_2 an important channel for SOA formation
Secondary organic aerosol formation from photooxidation of naphthalene and alkylnaphthalenes: implications for oxidation of intermediate volatility organic compounds (IVOCs)
Current atmospheric models do not include secondary
organic aerosol (SOA) production from gas-phase reactions
of polycyclic aromatic hydrocarbons (PAHs). Recent
studies have shown that primary emissions undergo oxidation
in the gas phase, leading to SOA formation. This
opens the possibility that low-volatility gas-phase precursors
are a potentially large source of SOA. In this work,
SOA formation from gas-phase photooxidation of naphthalene,
1-methylnaphthalene (1-MN), 2-methylnaphthalene (2-
MN), and 1,2-dimethylnaphthalene (1,2-DMN) is studied in
the Caltech dual 28-m^3 chambers. Under high-NO_x conditions
and aerosol mass loadings between 10 and 40μgm^(−3),
the SOA yields (mass of SOA per mass of hydrocarbon reacted)
ranged from 0.19 to 0.30 for naphthalene, 0.19 to 0.39
for 1-MN, 0.26 to 0.45 for 2-MN, and constant at 0.31 for
1,2-DMN. Under low-NO_x conditions, the SOA yields were
measured to be 0.73, 0.68, and 0.58, for naphthalene, 1-
MN, and 2-MN, respectively. The SOA was observed to be
semivolatile under high-NO_x conditions and essentially nonvolatile
under low-NO_x conditions, owing to the higher fraction
of ring-retaining products formed under low-NO_x conditions.
When applying these measured yields to estimate
SOA formation from primary emissions of diesel engines
and wood burning, PAHs are estimated to yield 3–5 times
more SOA than light aromatic compounds over photooxidation
timescales of less than 12 h. PAHs can also account for
up to 54% of the total SOA from oxidation of diesel emissions,
representing a potentially large source of urban SOA
Low Temperature Susceptibility of the Noncentrosymmetric Superconductor CePt_3Si
We report ac susceptibility measurements of polycrystalline CePt_3Si down to
60 mK and in applied fields up to 9 T. In zero field, a full Meissner state
emerges at temperatures T/Tc < 0.3, where Tc=0.65 K is the onset transition
temperature. Though transport measurements show a relatively high upper
critical field Bc2 ~ 4-5 T, the low temperature susceptibility, \chi', is quite
fragile to applied field, with \chi' diminishing rapidly in fields of a few kG.
Interestingly, the field dependence of \chi' is well described by the power
law, 4\pi\chi'=(B/B_c)^{1/2}, where Bc is the field at which the onset of
resistance is observed in transport measurements.Comment: 5 figure
CMB Constraint on Radion Evolution in the Brane World Scenario
In many versions of brane model, the modulus field of extra dimensions, the
radion, could have cosmological evolution, which induces variation of the Higgs
vacuum expectation value, , resulting in cosmological variation of the
electron mass $m_e$. The formation of Cosmic Microwave Background (CMB)
anisotropies is thus affected, causing changes both in the peaks positions and
amplitudes in the CMB power spectra. Using the three-year Wilkinson Microwave
Anisotropies Probe (WMAP) CMB data, with the Hubble parameter $H_0$ fixed to be
the Hubble Space Telescope (HST) result 72 km s$^{-1}$ Mpc$^{-1}$, we obtain a
constraint on $\rho$, the ratio of the value of at CMB recombination to
its present value, to be [0.97, 1.02].Comment: 7 pages, 6 figures, minor changes of format to conform with PRD
forma
A Model Behind the Standard Model
In spite of its many successes, the Standard Model makes many empirical
assumptions in the Higgs and fermion sectors for which a deeper theoretical
basis is sought. Starting from the usual gauge symmetry plus the 3 assumptions: (A) scalar fields as vielbeins in
internal symmetry space \cite{framevec}, (B) the ``confinement picture'' of
symmetry breaking \cite{tHooft,Banovici}, (C) generations as ``dual'' to colour
\cite{genmixdsm}, we are led to a scheme which offers: (I) a geometrical
significance to scalar fields, (II) a theoretical criterion on what scalar
fields are to be introduced, (III) a partial explanation of why appears
broken while confines, (IV) baryon-lepton number (B - L) conservation,
(V) the standard electroweak structure, (VI) a 3-valued generation index for
leptons and quarks, and (VII) a dynamical system with all the essential
features of an earlier phenomenological model \cite{genmixdsm} which gave a
good description of the known mass and mixing patterns of quarks and leptons
including neutrino oscillations. There are other implications the consistency
of which with experiment, however, has not yet been systematically explored. A
possible outcome is a whole new branch of particle spectroscopy from
confinement, potentially as rich in details as that of hadrons from colour
confinement, which will be accessible to experiment at high energy.Comment: 66 pages, added new material on phenomenology, and some new
reference
- …