2,254 research outputs found
Interaction of a putative transcriptional regulatory protein and the thermo-inducible cts-52 mutant repressor in the Bacillus subtilis phage φ105 genome
A 144 amino acid residue cts-52 mutant repressor (mtcφ105) located in the EcoRI-F immunity region (immF) of Bacillus subtilis phage φ105 is involved in the control mechanism of a thermo-inducible expression system. Adjacent to the repressor gene, an open-reading frame, designated ORF4, encodes a polypeptide of 90 amino acid residues, which shares a 37% homology with the amino acid sequence of the repressor. On the basis of the protein sequence alignment, a DNA-binding α helix-β turn-α helix (HTH) motif was identified in the N-terminal region (residues 18-37) of the repressor as well as in the polypeptide of ORF4 (residues 22-41). In vivo expression of the mutant repressor and ORF4 were confirmed by real-time reverse transcriptase polymerase chain reaction (RT-PCR) and Western blot analysis. To study their DNA binding properties, the wild-type repressor (wtcφ105) and the mutant repressor mtcφ105, which has a Thr17 to Ile substitution, were overexpressed in Escherichia coli and purified for affinity assays. Their affinities towards six operator sites at various temperatures were elucidated by surface plasmon resonance (SPR). Our data showed that a temperature shift does not influence the wtcφ105-operators' binding affinity, while the binding of mtcφ105 to the operators was temperature sensitive. This explains how thermo-induction triggers the release of the mutant repressor and renders heterologous gene expression. Interestingly, mtcφ105 and ORF4 demonstrated a large affinity discrepancy towards individual operators at different temperatures. mRNA levels monitored by real-time RT-PCR indicated a suppression of mtcφ105 expression, but a stimulation of ORF4 transcription after thermo-induction. Our data suggested that ORF4 might be a counter protein to the phage repressor in the modulation of the two divergent-oriented promoters P M and P R within the immF region. © 2003 Elsevier Ltd. All rights reserved.postprin
MEMRI study neonatal hypoxic-ischemic injury in the late stage
Session 16: Manganese Enhanced MRI: Methods & Applications - Oral presentationIn this study, in vivo MEMRI was employed to investigate the hypoxic-ischemic injury in the late phase. Mn2+ induced signal changes were examined using SPM coregistration and ROI analysis. T1WIs SI increase was detected in the perilesional region 24 hours after Mn2+ administration and it colocalized with the increase in glial cell density in GFAP staining, demonstrating the existence of reactive gliosis in the late phase after H-I injury.published_or_final_versionThe 17th Scientific Meeting & Exhibition of the International Society of Magnetic Resonance in Medicine (ISMRM), Honolulu, HI., 18-24 April 2009. In Proceedings of ISMRM 17th Scientific Meeting & Exhibition, 2009, p. 15
Transgenic plant-derived siRNAs can suppress propagation of influenza virus in mammalian cells
As an example of the cost-effective large-scale generation of small-interfering RNA (siRNAs), we have created transgenic tobacco plants that produce siRNAs targeted to the mRNA of the non-structural protein NS1 from the influenza A virus subtype H1N1. We have investigated if these siRNAs, specifically targeted to the 5 ′-portion of the NS1 transcripts (5mNS1), would suppress viral propagation in mammalian cells. Agroinfiltration of transgenic tobacco with an Agrobacterium strain harboring a 5mNS1-expressing binary vector caused a reduction in 5mNS1 transcripts in the siRNA-accumulating transgenic plants. Further, H1N1 infection of siRNA-transfected mammalian cells resulted in significant suppression of viral replication. These results demonstrate that plant-derived siRNAs can inhibit viral propagation through RNA interference and could potentially be applied in control of viral-borne diseases. © 2004 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.postprin
A dual protein expression system in Bacillus subtilis
We have developed a dual expression system for the simultaneous overexpression of two proteins in Bacillus subtilis. Two candidate genes, xylanase (xynA) and glucanase (bglS) from B. subtilis strain 168, which were engineered with independent Shine-Dalgarno (SD) sequences, were cloned in tandem into a transfer vector, which was then transformed into B. subtilis strain 1A304 (φ105MU331). The genes were under the transcriptional control of a strong promoter of a bacteriophage, φ105, where transcription was initiated upon thermal induction. Six constructs were made to compare the factors that affected the yields of the gene products. The expression level of each candidate gene was found to correspond to its position relative to the phage promoter, irrespective of the identity of the insert. The lower expression level of the second insert might have been due to limited resources for protein synthesis, a short half-life of the mRNA, or an early termination of the RNA polymerase. Curiously, gene duplications in tandem did not lead to further increase in production. © 2002 Elsevier Science (USA). All rights reserved.postprin
Sensor Fabrication Method for in Situ Temperature and Humidity Monitoring of Light Emitting Diodes
In this work micro temperature and humidity sensors are fabricated to measure the junction temperature and humidity of light emitting diodes (LED). The junction temperature is frequently measured using thermal resistance measurement technology. The weakness of this method is that the timing of data capture is not regulated by any standard. This investigation develops a device that can stably and continually measure temperature and humidity. The device is light-weight and can monitor junction temperature and humidity in real time. Using micro-electro-mechanical systems (MEMS), this study minimizes the size of the micro temperature and humidity sensors, which are constructed on a stainless steel foil substrate (40 μm-thick SS-304). The micro temperature and humidity sensors can be fixed between the LED chip and frame. The sensitivities of the micro temperature and humidity sensors are 0.06 ± 0.005 (Ω/°C) and 0.033 pF/%RH, respectively
A Combined Signal Approach To Technical Analysis On The S&P 500
This paper examines the effectiveness of nine technical trading rules on the S&P 500 from January 1950 to March 2008 (14,646 daily observations). The annualized returns from each trading rule are compared to a naïve buy-and-hold strategy to determine profitability. Over the 59 year period, only the moving-average cross-over (1,200) and (5,150) trading rules were able to outperform the buy-and-hold trading strategy after adjusting for transaction costs. However, excess returns were generated by employing a Combined Signal Approach (CSA) on the individual trading rules. Statistical significance was confirmed through bootstrap simulations and robustness through sub-period analysis. 
Dopamine Induced Neurodegeneration in a PINK1 Model of Parkinson's Disease
Parkinson's disease is a common neurodegenerative disease characterised by progressive loss of dopaminergic neurons, leading to dopamine depletion in the striatum. Mutations in the PINK1 gene cause an autosomal recessive form of Parkinson's disease. Loss of PINK1 function causes mitochondrial dysfunction, increased reactive oxygen species production and calcium dysregulation, which increases susceptibility to neuronal death in Parkinson's disease. The basis of neuronal vulnerability to dopamine in Parkinson's disease is not well understood
Gene expression relationship between prostate cancer cells of Gleason 3, 4 and normal epithelial cells as revealed by cell type-specific transcriptomes
Background: Prostate cancer cells in primary tumors have been typed CD10(-)/CD13(-)/CD24(hi)/CD26(+)/CD38(lo)/CD44(-)/CD104(-). This CD phenotype suggests a lineage relationship between cancer cells and luminal cells. The Gleason grade of tumors is a descriptive of tumor glandular differentiation. Higher Gleason scores are associated with treatment failure. Methods: CD26(+) cancer cells were isolated from Gleason 3+3 (G3) and Gleason 4+4 (G4) tumors by cell sorting, and their gene expression or transcriptome was determined by Affymetrix DNA array analysis. Dataset analysis was used to determine gene expression similarities and differences between G3 and G4 as well as to prostate cancer cell lines and histologically normal prostate luminal cells. Results: The G3 and G4 transcriptomes were compared to those of prostatic cell types of non-cancer, which included luminal, basal, stromal fibromuscular, and endothelial. A principal components analysis of the various transcriptome datasets indicated a closer relationship between luminal and G3 than luminal and G4. Dataset comparison also showed that the cancer transcriptomes differed substantially from those of prostate cancer cell lines. Conclusions: Genes differentially expressed in cancer are potential biomarkers for cancer detection, and those differentially expressed between G3 and G4 are potential biomarkers for disease stratification given that G4 cancer is associated with poor outcomes. Differentially expressed genes likely contribute to the prostate cancer phenotype and constitute the signatures of these particular cancer cell types.National Institutes of Health (NIH)[CA111244]National Institutes of Health (NIH)[CA98699]National Institutes of Health (NIH)[CA85859]National Institutes of Health (NIH)[DK63630][P50-GMO-76547
- …