815 research outputs found

    Ambulance Emergency Response Optimization in Developing Countries

    Full text link
    The lack of emergency medical transportation is viewed as the main barrier to the access of emergency medical care in low and middle-income countries (LMICs). In this paper, we present a robust optimization approach to optimize both the location and routing of emergency response vehicles, accounting for uncertainty in travel times and spatial demand characteristic of LMICs. We traveled to Dhaka, Bangladesh, the sixth largest and third most densely populated city in the world, to conduct field research resulting in the collection of two unique datasets that inform our approach. This data is leveraged to develop machine learning methodologies to estimate demand for emergency medical services in a LMIC setting and to predict the travel time between any two locations in the road network for different times of day and days of the week. We combine our robust optimization and machine learning frameworks with real data to provide an in-depth investigation into three policy-related questions. First, we demonstrate that outpost locations optimized for weekday rush hour lead to good performance for all times of day and days of the week. Second, we find that significant improvements in emergency response times can be achieved by re-locating a small number of outposts and that the performance of the current system could be replicated using only 30% of the resources. Lastly, we show that a fleet of small motorcycle-based ambulances has the potential to significantly outperform traditional ambulance vans. In particular, they are able to capture three times more demand while reducing the median response time by 42% due to increased routing flexibility offered by nimble vehicles on a larger road network. Our results provide practical insights for emergency response optimization that can be leveraged by hospital-based and private ambulance providers in Dhaka and other urban centers in LMICs

    Inverse Optimization: Closed-form Solutions, Geometry and Goodness of fit

    Full text link
    In classical inverse linear optimization, one assumes a given solution is a candidate to be optimal. Real data is imperfect and noisy, so there is no guarantee this assumption is satisfied. Inspired by regression, this paper presents a unified framework for cost function estimation in linear optimization comprising a general inverse optimization model and a corresponding goodness-of-fit metric. Although our inverse optimization model is nonconvex, we derive a closed-form solution and present the geometric intuition. Our goodness-of-fit metric, ρ\rho, the coefficient of complementarity, has similar properties to R2R^2 from regression and is quasiconvex in the input data, leading to an intuitive geometric interpretation. While ρ\rho is computable in polynomial-time, we derive a lower bound that possesses the same properties, is tight for several important model variations, and is even easier to compute. We demonstrate the application of our framework for model estimation and evaluation in production planning and cancer therapy

    The Perils of Adapting to Dose Errors in Radiation Therapy

    Get PDF
    We consider adaptive robust methods for lung cancer that are also dose-reactive, wherein the treatment is modified after each treatment session to account for the dose delivered in prior treatment sessions. Such methods are of interest because they potentially allow for errors in the delivered dose to be corrected as the treatment progresses, thereby ensuring that the tumor receives a sufficient dose at the end of the treatment. We show through a computational study with real lung cancer patient data that while dose reaction is beneficial with respect to the final dose distribution, it may lead to exaggerated daily underdose and overdose relative to non-reactive methods that grows as the treatment progresses. However, by combining dose reaction with a mechanism for updating an estimate of the uncertainty, the magnitude of this growth can be mitigated substantially. The key finding of this paper is that reacting to dose errors – an adaptation strategy that is both simple and intuitively appealing – may backfire and lead to treatments that are clinically unacceptable.Natural Sciences and Engineering Research Council of Canada (Canadian Institutes of Health Research Collaborative Health Research Project Grant 398106-2011
    corecore