271 research outputs found

    GIS-aided planning of insecticide spraying to control dengue transmission

    Full text link

    Online platform for applying space–time scan statistics for prospectively detecting emerging hot spots of dengue fever

    Get PDF
    Abstract Background Cases of dengue fever have increased in areas of Southeast Asia in recent years. Taiwan hit a record-high 42,856 cases in 2015, with the majority in southern Tainan and Kaohsiung Cities. Leveraging spatial statistics and geo-visualization techniques, we aim to design an online analytical tool for local public health workers to prospectively identify ongoing hot spots of dengue fever weekly at the village level. Methods A total of 57,516 confirmed cases of dengue fever in 2014 and 2015 were obtained from the Taiwan Centers for Disease Control (TCDC). Incorporating demographic information as covariates with cumulative cases (365 days) in a discrete Poisson model, we iteratively applied space–time scan statistics by SaTScan software to detect the currently active cluster of dengue fever (reported as relative risk) in each village of Tainan and Kaohsiung every week. A village with a relative risk >1 and p value <0.05 was identified as a dengue-epidemic area. Assuming an ongoing transmission might continuously spread for two consecutive weeks, we estimated the sensitivity and specificity for detecting outbreaks by comparing the scan-based classification (dengue-epidemic vs. dengue-free village) with the true cumulative case numbers from the TCDC’s surveillance statistics. Results Among the 1648 villages in Tainan and Kaohsiung, the overall sensitivity for detecting outbreaks increases as case numbers grow in a total of 92 weekly simulations. The specificity for detecting outbreaks behaves inversely, compared to the sensitivity. On average, the mean sensitivity and specificity of 2-week hot spot detection were 0.615 and 0.891 respectively (p value <0.001) for the covariate adjustment model, as the maximum spatial and temporal windows were specified as 50% of the total population at risk and 28 days. Dengue-epidemic villages were visualized and explored in an interactive map. Conclusions We designed an online analytical tool for front-line public health workers to prospectively detect ongoing dengue fever transmission on a weekly basis at the village level by using the routine surveillance data

    Daily forecast of dengue fever incidents for urban villages in a city

    Full text link

    A GIS-Aided Assessment of the Health Hazards of Cadmium in Farm Soils in Central Taiwan

    Get PDF
    A geostatistical method was developed to examine the correlation, or lack of it, between the levels of cadmium (Cd) detected in farm soils and those detected in the human specimens collected from residents around the contaminated areas in Changhua County where cadmium contamination of staple rice has been documented. We used the Taiwan EPA environment data in 2002 and human data which were generated by the National Health Research Institutes during 2003–2005. Kriging interpolation methods were used to determine soil Cd concentrations. A Zonal statistical function was performed to assess the individual exposure. Soil Cd levels and tissue Cd levels in residents were analyzed for contamination hotspots and other areas to determine correlation between the two variables. Three Cd contamination hotspots were identified, in which no correlation was found between soil Cd levels and tissue Cd levels in residents. Our results demonstrate how GIS spatial modeling technique can be used to estimate distribution of pollutants in an area using a limited number of data points. Results indicated no association between the soil contamination and the exposure of residents to Cd, suggesting that both the soils and the residents are receptors of Cd as a pollutant from as yet unidentified sources

    Analyzing Personal Happiness from Global Survey and Weather Data: A Geospatial Approach

    Get PDF
    Past studies have shown that personal subjective happiness is associated with various macro- and micro-level background factors, including environmental conditions, such as weather and the economic situation, and personal health behaviors, such as smoking and exercise. We contribute to this literature of happiness studies by using a geospatial approach to examine both macro and micro links to personal happiness. Our geospatial approach incorporates two major global datasets: representative national survey data from the International Social Survey Program (ISSP) and corresponding world weather data from the National Oceanic and Atmospheric Administration (NOAA). After processing and filtering 55,081 records of ISSP 2011 survey data from 32 countries, we extracted 5,420 records from China and 25,441 records from 28 other countries. Sensitivity analyses of different intervals for average weather variables showed that macro-level conditions, including temperature, wind speed, elevation, and GDP, are positively correlated with happiness. To distinguish the effects of weather conditions on happiness in different seasons, we also adopted climate zone and seasonal variables. The micro-level analysis indicated that better health status and eating more vegetables or fruits are highly associated with happiness. Never engaging in physical activity appears to make people less happy. The findings suggest that weather conditions, economic situations, and personal health behaviors are all correlated with levels of happiness

    Spatiotemporal analysis of air pollution and asthma patient visits in Taipei, Taiwan

    Get PDF
    [[abstract]]Background: Buffer analyses have shown that air pollution is associated with an increased incidence of asthma, but little is known about how air pollutants affect health outside a defined buffer. The aim of this study was to better understand how air pollutants affect asthma patient visits in a metropolitan area. The study used an integrated spatial and temporal approach that included the Kriging method and the Generalized Additive Model (GAM). Results: We analyzed daily outpatient and emergency visit data from the Taiwan Bureau of National Health Insurance and air pollution data from the Taiwan Environmental Protection Administration during 2000-2002. In general, children (aged 0-15 years) had the highest number of total asthma visits. Seasonal changes of PM10, NO2, O3 and SO2 were evident. However, SO2 showed a positive correlation with the dew point (r = 0.17, p < 0.01) and temperature (r = 0.22, p < 0.01). Among the four pollutants studied, the elevation of NO2 concentration had the highest impact on asthma outpatient visits on the day that a 10% increase of concentration caused the asthma outpatient visit rate to increase by 0.30% (95% CI: 0.16%??.45%) in the four pollutant model. For emergency visits, the elevation of PM10 concentration, which occurred two days before the visits, had the most significant influence on this type of patient visit with an increase of 0.14% (95% CI: 0.01%??.28%) in the four pollutants model. The impact on the emergency visit rate was non-significant two days following exposure to the other three air pollutants. Conclusion: This preliminary study demonstrates the feasibility of an integrated spatial and temporal approach to assess the impact of air pollution on asthma patient visits. The results of this study provide a better understanding of the correlation of air pollution with asthma patient visits and demonstrate that NO2 and PM10 might have a positive impact on outpatient and emergency settings respectively. Future research is required to validate robust spatiotemporal patterns and trends

    Taipei's Use of a Multi-Channel Mass Risk Communication Program to Rapidly Reverse an Epidemic of Highly Communicable Disease

    Get PDF
    BACKGROUND: In September 2007, an outbreak of acute hemorrhagic conjunctivitis (AHC) occurred in Keelung City and spread to Taipei City. In response to the epidemic, a new crisis management program was implemented and tested in Taipei. METHODOLOGY AND PRINCIPAL FINDINGS: Having noticed that transmission surged on weekends during the Keelung epidemic, Taipei City launched a multi-channel mass risk communications program that included short message service (SMS) messages sent directly to approximately 2.2 million Taipei residents on Friday, October 12th, 2007. The public was told to keep symptomatic students from schools and was provided guidelines for preventing the spread of the disease at home. Epidemiological characteristics of Taipei's outbreak were analyzed from 461 sampled AHC cases. Median time from exposure to onset of the disease was 1 day. This was significantly shorter for cases occurring in family clusters than in class clusters (mean+/-SD: 2.6+/-3.2 vs. 4.39+/-4.82 days, p = 0.03), as well as for cases occurring in larger family clusters as opposed to smaller ones (1.2+/-1.7 days vs. 3.9+/-4.0 days, p<0.01). Taipei's program had a significant impact on patient compliance. Home confinement of symptomatic children increased from 10% to 60% (p<0.05) and helped curb the spread of AHC. Taipei experienced a rapid decrease in AHC cases between the Friday of the SMS announcement and the following Monday, October 15, (0.70% vs. 0.36%). By October 26, AHC cases reduced to 0.01%. The success of this risk communication program in Taipei (as compared to Keelung) is further reflected through rapid improvements in three epidemic indicators: (1) significantly lower crude attack rates (1.95% vs. 14.92%, p<0.001), (2) a short epidemic period of AHC (13 vs. 34 days), and (3) a quick drop in risk level (1 approximately 2 weeks) in Taipei districts that border Keelung (the original domestic epicenter). CONCLUSIONS AND SIGNIFICANCE: The timely launch of this systematic, communication-based intervention proved effective at preventing a dangerous spike in AHC and was able to bring this high-risk disease under control. We recommend that public health officials incorporate similar methods into existing guidelines for preventing pandemic influenza and other emerging infectious diseases

    Emerged HA and NA Mutants of the Pandemic Influenza H1N1 Viruses with Increasing Epidemiological Significance in Taipei and Kaohsiung, Taiwan, 2009–10

    Get PDF
    The 2009 influenza pandemic provided an opportunity to observe dynamic changes of the hemagglutinin (HA) and neuraminidase (NA) of pH1N1 strains that spread in two metropolitan areas -Taipei and Kaohsiung. We observed cumulative increases of amino acid substitutions of both HA and NA that were higher in the post–peak than in the pre-peak period of the epidemic. About 14.94% and 3.44% of 174 isolates had one and two amino acids changes, respective, in the four antigenic sites. One unique adaptive mutation of HA2 (E374K) was first detected three weeks before the epidemic peak. This mutation evolved through the epidemic, and finally emerged as the major circulated strain, with significantly higher frequency in the post-peak period than in the pre-peak (64.65% vs 9.28%, p<0.0001). E374K persisted until ten months post-nationwide vaccination without further antigenic changes (e.g. prior to the highest selective pressure). In public health measures, the epidemic peaked at seven weeks after oseltamivir treatment was initiated. The emerging E374K mutants spread before the first peak of school class suspension, extended their survival in high-density population areas before vaccination, dominated in the second wave of class suspension, and were fixed as herd immunity developed. The tempo-spatial spreading of E374K mutants was more concentrated during the post–peak (p = 0.000004) in seven districts with higher spatial clusters (p<0.001). This is the first study examining viral changes during the naïve phase of a pandemic of influenza through integrated virological/serological/clinical surveillance, tempo-spatial analysis, and intervention policies. The vaccination increased the percentage of E374K mutants (22.86% vs 72.34%, p<0.001) and significantly elevated the frequency of mutations in Sa antigenic site (2.36% vs 23.40%, p<0.001). Future pre-vaccination public health efforts should monitor amino acids of HA and NA of pandemic influenza viruses isolated at exponential and peak phases in areas with high cluster cases
    corecore