20 research outputs found

    Metric embeddings with relaxed guarantees

    Get PDF
    We consider the problem of embedding finite metrics with slack: We seek to produce embeddings with small dimension and distortion while allowing a (small) constant fraction of all distances to be arbitrarily distorted. This definition is motivated by recent research in the networking community, which achieved striking empirical success at embedding Internet latencies with low distortion into low-dimensional Euclidean space, provided that some small slack is allowed. Answering an open question of Kleinberg, Slivkins, and Wexler [in Proceedings of the 45th IEEE Symposium on Foundations of Computer Science, 2004], we show that provable guarantees of this type can in fact be achieved in general: Any finite metric space can be embedded, with constant slack and constant distortion, into constant-dimensional Euclidean space. We then show that there exist stronger embeddings into l 1 which exhibit gracefully degrading distortion: There is a single embedding into l 1 that achieves distortion at most O (log 1/∈) on all but at most an ∈ fraction of distances simultaneously for all ∈ > 0. We extend this with distortion O (log 1/∈) 1/p to maps into general l p, p ≥ 1, for several classes of metrics, including those with bounded doubling dimension and those arising from the shortest-path metric of a graph with an excluded minor. Finally, we show that many of our constructions are tight and give a general technique to obtain lower bounds for ∈-slack embeddings from lower bounds for low-distortion embeddings. © 2009 Society for Industrial and Applied Mathematics.published_or_final_versio

    Small hop-diameter sparse spanners for doubling metrics

    No full text
    Given a metric M=(V,d), a graph G=(V,E) is a t-spanner for M if every pair of nodes in V has a "short" path (i.e., of length at most t times their actual distance) between them in the spanner. Furthermore, this spanner has a hop diameter bounded by D if every pair of nodes has such a short path that also uses at most D edges. We consider the problem of constructing sparse (1+ε)-spanners with small hop diameter for metrics of low doubling dimension. In this paper, we show that given any metric with constant doubling dimension k and any 0<ε<1, one can find (1+ε)-spanner for the metric with nearly linear number of edges (i.e., only O(nlog∈ * n+n ε -O(k)) edges) and constant hop diameter; we can also obtain a (1+ε)-spanner with linear number of edges (i.e., only n ε -O(k) edges) that achieves a hop diameter that grows like the functional inverse of Ackermann's function. Moreover, we prove that such tradeoffs between the number of edges and the hop diameter are asymptotically optimal. © 2008 The Author(s).link_to_subscribed_fulltex

    An SDP primal-dual algorithm for approximating the lovász-theta function

    No full text
    The Lovász v-function [Lov79] on a graph G = (V, E) can be defined as the maximum of the sum of the entries of a positive semidefinite matrix X, whose trace Tr(X) equals 1, and X i j = 0 whenever {i, j} ε E. This function appears as a subroutine for many algorithms for graph problems such as maximum independent set and maximum clique. We apply Arora and Kale's primal-dual method for SDP to design an approximate algorithm for the v-function with an additive error of δ > 0, which runs in time O(α2n2/δ 2 logn - Me), where α = v(G) and Me = O(n3) is the time for a matrix exponentiation operation. Moreover, our techniques generalize to the weighted Lovász v-function, and both the maximum independent set weight and the maximum clique weight for vertex weighted perfect graphs can be approximated within a factor of (1+ε) in time O(ε -2n 5 log n). © 2009 IEEE.link_to_subscribed_fulltex

    A random-surfer web-graph model

    No full text
    In this paper we provide theoretical and experimental results on a random-surfer model for construction of a random graph. In this model, a new node connects to the existing graph by choosing a start node uniformly at random and then performing a short random walk. We show that in certain formulations, this results in the same distribution as the preferential-attachment random-graph model, and in others we give a direct analysis of power-law distribution of degrees or "virtual degrees" of the resulting graphs. We also present experimental results for a number of settings of parameters that we are not able to analyze mathematically.link_to_subscribed_fulltex

    An eight-node hybrid-stress solid-shell element for geometric non-linear analysis of elastic shells

    No full text
    This paper presents eight-node solid-shell elements for geometric non-linear analysis of elastic shells. To subdue shear, trapezoidal and thickness locking, the assumed natural strain method and an ad hoc modified generalized laminate stiffness matrix are employed. A selectively reduced integrated element is formulated with its membrane and bending shear strain components taken to be constant and equal to the ones evaluated at the element centroid. With the generalized stresses arising from the modified generalized laminate stiffness matrix assumed to be independent from the ones obtained from the displacement, an extended Hellinger-Reissner functional can be derived. By choosing the assumed generalized stresses similar to the assumed stresses of a previous solid element, a hybrid-stress solid-shell element is formulated. Commonly employed geometric non-linear homogeneous and laminated shell problems are attempted and our results are close to those of other state-of-the-art elements. Moreover, the hybrid-stress element converges more readily than the selectively reduced integrated element in all benchmark problems. Copyright © 2002 John Wiley & Sons, Ltd.link_to_subscribed_fulltex

    Spanners with slack

    No full text
    Given a metric (V, d), a spanner is a sparse graph whose shortest-path metric approximates the distance d to within a small multiplicative distortion. In this paper, we study the problem of spanners with slack: e.g., can we find sparse spanners where we are allowed to incur an arbitrarily large distortion on a small constant fraction of the distances, but are then required to incur only a constant (independent of n) distortion on the remaining distances? We answer this question in the affirmative, thus complementing similar recent results on embeddings with slack into ℓ p spaces. For instance, we show that if we ignore an e fraction of the distances, we can get spanners with O(n) edges and O(log 1/ε) distortion for the remaining distances. We also show how to obtain sparse and low-weight spanners with slack from existing constructions of conventional spanners, and these techniques allow us to also obtain the best known results for distance oracles and distance labelings with slack. This paper complements similar results obtained in recent research on slack embeddings into normed metric spaces. © Springer-Verlag Berlin Heidelberg 2006.link_to_subscribed_fulltex

    The Davenport New Era

    No full text
    Weekly newspaper from Davenport, Oklahoma that includes local, state, and national news along with advertising

    Multi-Dimensional Range Query over Encrypted Data

    Get PDF
    We design an encryption scheme called Multi-dimensional Range Query over Encrypted Data (MRQED), to address the privacy concerns related to the sharing of network audit logs and various other applications. Our scheme allows a network gateway to encrypt summaries of network flows before submitting them to an untrusted repository. When network intrusions are suspected, an authority can release a key to an auditor, allowing the auditor to decrypt flows whose attributes (e.g., source and destination addresses, port numbers, etc.) fall within specific ranges. However, the privacy of all irrelevant flows are still preserved. We formally define the security for MRQED and prove the security of our construction under the decision bilinear Diffie-Hellman and decision linear assumptions in certain bilinear groups. We study the practical performance of our construction in the context of network audit logs. Apartfrom network audit logs, our scheme also has interesting applications for financial audit logs, medical privacy, untrusted remote storage, etc. In particular, we show that MRQED implies a solution to its dual problem, which enables investors to trade stocks through a broker in a privacypreserving manner. ©2007 IEEE.link_to_subscribed_fulltex

    Multi-Dimensional Range Query over Encrypted Data

    No full text
    We design an encryption scheme called Multi-dimensional Range Query over Encrypted Data (MRQED), to address the privacy concerns related to the sharing of network audit logs and various other applications. Our scheme allows a network gateway to encrypt summaries of network flows before submitting them to an untrusted repository. When network intrusions are suspected, an authority can release a key to an auditor, allowing the auditor to decrypt flows whose attributes (e.g., source and destination addresses, port numbers, etc.) fall within specific ranges. However, the privacy of all irrelevant flows are still preserved. We formally define the security for MRQED and prove the security of our construction under the decision bilinear Diffie-Hellman and decision linear assumptions in certain bilinear groups. We study the practical performance of our construction in the context of network audit logs. Apartfrom network audit logs, our scheme also has interesting applications for financial audit logs, medical privacy, untrusted remote storage, etc. In particular, we show that MRQED implies a solution to its dual problem, which enables investors to trade stocks through a broker in a privacypreserving manner. ©2007 IEEE.link_to_subscribed_fulltex

    A Hybrid Finite Element Algorithm by Virtual Work Principle and its Application in Fracture Mechanics

    No full text
    corecore