275 research outputs found

    Uncharacterized conserved motifs outside the HD-Zip domain in HD-Zip subfamily I transcription factors; a potential source of functional diversity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plant HD-Zip transcription factors are modular proteins in which a homeodomain is associated to a leucine zipper. Of the four subfamilies in which they are divided, the tested members from subfamily I bind <it>in vitro </it>the same pseudopalindromic sequence CAAT(A/T)ATTG and among them, several exhibit similar expression patterns. However, most experiments in which HD-Zip I proteins were over or ectopically expressed under the control of the constitutive promoter 35S CaMV resulted in transgenic plants with clearly different phenotypes. Aiming to elucidate the structural mechanisms underlying such observation and taking advantage of the increasing information in databases of sequences from diverse plant species, an <it>in silico </it>analysis was performed. In addition, some of the results were also experimentally supported.</p> <p>Results</p> <p>A phylogenetic tree of 178 HD-Zip I proteins together with the sequence conservation presented outside the HD-Zip domains allowed the distinction of six groups of proteins. A motif-discovery approach enabled the recognition of an activation domain in the carboxy-terminal regions (CTRs) and some putative regulatory mechanisms acting in the amino-terminal regions (NTRs) and CTRs involving sumoylation and phosphorylation. A yeast one-hybrid experiment demonstrated that the activation activity of ATHB1, a member of one of the groups, is located in its CTR. Chimerical constructs were performed combining the HD-Zip domain of one member with the CTR of another and transgenic plants were obtained with these constructs. The phenotype of the chimerical transgenic plants was similar to the observed in transgenic plants bearing the CTR of the donor protein, revealing the importance of this module inside the whole protein.</p> <p>Conclusions</p> <p>The bioinformatical results and the experiments conducted in yeast and transgenic plants strongly suggest that the previously poorly analyzed NTRs and CTRs of HD-Zip I proteins play an important role in their function, hence potentially constituting a major source of functional diversity among members of this subfamily.</p

    Successful field performance in warm and dry environments of soybean expressing the sunflower transcription factor HB4

    Get PDF
    Ribichich, Karina Fabiana. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Instituto de Agrobiotecnología del Litoral Santa Fe, Argentina.Chiozza, Mariana. INDEAR/BIOCERES. Rosario, Argentina.Ávalos Britez, Selva. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino (EEA Pergamino). Pergamino, Buenos Aires, Argentina.Cabello, Julieta V. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Instituto de Agrobiotecnología del Litoral Santa Fe, Argentina.Arce, Augustin L. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Instituto de Agrobiotecnología del Litoral Santa Fe, Argentina.Watson, Gerónimo. INDEAR/BIOCERES. Rosario, Argentina.Arias, Claudia. Universidad Nacional de Rosario. CIFASIS. Rosario, Argentina.Portapila, Margarita. Universidad Nacional de Rosario. CIFASIS. Rosario, Argentina.Trucco, Federico. INDEAR/BIOCERES. Rosario, Argentina.Otegui, María Elena. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino (EEA Pergamino). Pergamino, Buenos Aires, Argentina.Chan, Raquel Lía. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Instituto de Agrobiotecnología del Litoral Santa Fe, Argentina.3142–3156Soybean yield is limited primarily by abiotic constraints. No transgenic soybean with improved abiotic stress tolerance is commercially available. We transformed soybean plants with genetic constructs able to express the sunflower transcription factor HaHB4, which confers drought tolerance to Arabidopsis and wheat. One line (b10H) carrying the sunflower promoter was chosen among three independent lines because it exhibited the best performance in seed yield, and was evaluated in the greenhouse and in 27 field trials in different environments in Argentina. In greenhouse experiments, transgenic plants showed increased seed yield under stress conditions together with greater epicotyl diameter, larger xylem area, and increased water use efficiency compared with controls. They also exhibited enhanced seed yield in warm and dry field conditions. This response was accompanied by an increase in seed number that was not compensated by a decrease in individual seed weight. Transcriptome analysis of plants from a field trial with maximum difference in seed yield between genotypes indicated the induction of genes encoding redox and heat shock proteins in b10H. Collectively, our results indicate that soybeans transformed with HaHB4 are expected to have a reduced seed yield penalty when cultivated in warm and dry conditions, which constitute the best target environments for this technology

    Gramine derivatives targeting Ca2+ channels and Ser/Thr phosphatases: A new dual strategy for the treatment of neurodegenerative diseases

    Full text link
    This document is the unedited author's version of a Submitted Work that was subsequently accepted for publication in Journal of Medicinal Chemistry , copyright © American Chemical Society after peer review. To access the final edited and published work, see http://pubs.acs.org/doi/abs/10.1021/acs.jmedchem.6b00478We describe the synthesis of gramine derivatives and their pharmacological evaluation as multipotent drugs for the treatment of Alzheimer’s disease. An innovative multitarget approach is presented, targeting both voltage-gated Ca2+ channels, classically studied for neurodegenerative diseases, and Ser/Thr phosphatases, which have been marginally aimed, even despite their key role in protein τ dephosphorylation. Twenty-five compounds were synthesized, and mostly their neuroprotective profile exceeded that offered by the head compound gramine. In general, these compounds reduced the entry of Ca2+ through VGCC, as measured by Fluo-4/AM and patch clamp techniques, and protected in Ca2+ overload-induced models of neurotoxicity, like glutamate or veratridine exposures. Furthermore, we hypothesize that these compounds decrease τ hyperphosphorylation based on the maintenance of the Ser/Thr phosphatase activity and their neuroprotection against the damage caused by okadaic acid. Hence, we propose this multitarget approach as a new and promising strategy for the treatment of neurodegenerative diseasesThis work was supported by the following grant: Proyectos de InvestigaciĂłn en Salud (PI13/00789, IS Carlos III). R.L.C is granted by Universidad AutĂłnoma de Madri

    Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis

    Get PDF
    Allergic rhinitis is the most common clinical presentation of allergy, affecting 400 million people worldwide, with increasing incidence in westernized countries1,2. To elucidate the genetic architecture and understand the underlying disease mechanisms, we carried out a meta-analysis of allergic rhinitis in 59,762 cases and 152,358 controls of European ancestry and identified a total of 41 risk loci for allergic rhinitis, including 20 loci not previously associated with allergic rhinitis, which were confirmed in a replication phase of 60,720 cases and 618,527 controls. Functional annotation implicated genes involved in various immune pathways, and fine mapping of the HLA region suggested amino acid variants important for antigen binding. We further performed genome-wide association study (GWAS) analyses of allergic sensitization against inhalant allergens and nonallergic rhinitis, which suggested shared genetic mechanisms across rhinitis-related traits. Future studies of the identified loci and genes might identify novel targets for treatment and prevention of allergic rhinitis

    Nicotiana attenuata NaHD20 plays a role in leaf ABA accumulation during water stress, benzylacetone emission from flowers, and the timing of bolting and flower transitions

    Get PDF
    Homeodomain-leucine zipper type I (HD-Zip I) proteins are plant-specific transcription factors associated with the regulation of growth and development in response to changes in the environment. Nicotiana attenuata NaHD20 was identified as an HD-Zip I-coding gene whose expression was induced by multiple stress-associated stimuli including drought and wounding. To study the role of NaHD20 in the integration of stress responses with changes in growth and development, its expression was silenced by virus-induced gene silencing (VIGS), and control and silenced plants were metabolically and developmentally characterized. Phytohormone profiling showed that NaHD20 plays a positive role in abscisic acid (ABA) accumulation in leaves during water stress and in the expression of some dehydration-responsive genes including ABA biosynthetic genes. Moreover, consistent with the high levels of NaHD20 expression in corollas, the emission of benzylacetone from flowers was reduced in NaHD20-silenced plants. Additionally, bolting time and the opening of the inflorescence buds was decelerated in these plants in a specific developmental stage without affecting the total number of flowers produced. Water stress potentiated these effects; however, after plants recovered from this condition, the opening of the inflorescence buds was accelerated in NaHD20-silenced plants. In summary, NaHD20 plays multiple roles in N. attenuata and among these are the coordination of responses to dehydration and its integration with changes in flower transitions

    Consensus Guidelines for Advancing Coral Holobiont Genome and Specimen Voucher Deposition

    Get PDF
    Coral research is being ushered into the genomic era. To fully capitalize on the potential discoveries from this genomic revolution, the rapidly increasing number of high-quality genomes requires effective pairing with rigorous taxonomic characterizations of specimens and the contextualization of their ecological relevance. However, to date there is no formal framework that genomicists, taxonomists, and coral scientists can collectively use to systematically acquire and link these data. Spurred by the recently announced “Coral symbiosis sensitivity to environmental change hub” under the “Aquatic Symbiosis Genomics Project” - a collaboration between the Wellcome Sanger Institute and the Gordon and Betty Moore Foundation to generate gold-standard genome sequences for coral animal hosts and their associated Symbiodiniaceae microalgae (among the sequencing of many other symbiotic aquatic species) - we outline consensus guidelines to reconcile different types of data. The metaorganism nature of the coral holobiont provides a particular challenge in this context and is a key factor to consider for developing a framework to consolidate genomic, taxonomic, and ecological (meta)data. Ideally, genomic data should be accompanied by taxonomic references, i.e., skeletal vouchers as formal morphological references for corals and strain specimens in the case of microalgal and bacterial symbionts (cultured isolates). However, exhaustive taxonomic characterization of all coral holobiont member species is currently not feasible simply because we do not have a comprehensive understanding of all the organisms that constitute the coral holobiont. Nevertheless, guidelines on minimal, recommended, and ideal-case descriptions for the major coral holobiont constituents (coral animal, Symbiodiniaceae microalgae, and prokaryotes) will undoubtedly help in future referencing and will facilitate comparative studies. We hope that the guidelines outlined here, which we will adhere to as part of the Aquatic Symbiosis Genomics Project sub-hub focused on coral symbioses, will be useful to a broader community and their implementation will facilitate cross- and meta-data comparisons and analyses.CV acknowledges funding from the German Research Foundation (DFG), grants 433042944 and 458901010. Open Access publication fees are covered by an institutional agreement of the University of Konstanz

    A novel procedure to measure the antioxidant capacity of Yerba maté extracts

    Full text link
    Yerba maté extracts have in vitro antioxidant capacity attributed to the presence of polyphenolic compounds, mainly chlorogenic acids and dicaffeoylquinic acid derivatives. DPPH is one of the most used assays to measure the antioxidant capacity of pure compounds and plant extracts. It is difficult to compare the results between studies because this assay is applied in too many different conditions by the different research groups. Thus, in order to assess the antioxidant capacity of yerba maté extracts, the following procedure is proposed: 100 ”L of an aqueous dilution of the extracts is mixed in duplicate with 3.0 mL of a DPPH 'work solution in absolute methanol (100 ”M.L-1), with an incubation time of 120 minutes in darkness at 37 ± 1 °C, and then absorbance is read at 517 nm against absolute methanol. The results should be expressed as ascorbic acid equivalents or Trolox equivalents in mass percentage (g% dm, dry matter) in order to facilitate comparisons. The AOC of the ethanolic extracts ranged between 12.8 and 23.1 g TE % dm and from 9.1 to 16.4 g AAE % dm. The AOC determined by the DPPH assay proposed in the present study can be related to the total polyphenolic content determined by the Folin-Ciocalteu assay

    First M87 Event Horizon Telescope Results and the Role of ALMA

    Full text link
    In April 2019, the Event Horizon Telescope (EHT) collaboration revealed the first image of the candidate super-massive black hole (SMBH) at the centre of the giant elliptical galaxy Messier 87 (M87). This event-horizon-scale image shows a ring of glowing plasma with a dark patch at the centre, which is interpreted as the shadow of the black hole. This breakthrough result, which represents a powerful confirmation of Einstein's theory of gravity, or general relativity, was made possible by assembling a global network of radio telescopes operating at millimetre wavelengths that for the first time included the Atacama Large Millimeter/ submillimeter Array (ALMA). The addition of ALMA as an anchor station has enabled a giant leap forward by increasing the sensitivity limits of the EHT by an order of magnitude, effectively turning it into an imaging array. The published image demonstrates that it is now possible to directly study the event horizon shadows of SMBHs via electromagnetic radiation, thereby transforming this elusive frontier from a mathematical concept into an astrophysical reality. The expansion of the array over the next few years will include new stations on different continents - and eventually satellites in space. This will provide progressively sharper and higher-fidelity images of SMBH candidates, and potentially even movies of the hot plasma orbiting around SMBHs. These improvements will shed light on the processes of black hole accretion and jet formation on event-horizon scales, thereby enabling more precise tests of general relativity in the truly strong field regime.Comment: 11 pages + cover page, 6 figure

    Effect of primary care physicians' use of estimated glomerular filtration rate on the timing of their subspecialty referral decisions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Primary care providers' suboptimal recognition of the severity of chronic kidney disease (CKD) may contribute to untimely referrals of patients with CKD to subspecialty care. It is unknown whether U.S. primary care physicians' use of estimated glomerular filtration rate (eGFR) rather than serum creatinine to estimate CKD severity could improve the timeliness of their subspecialty referral decisions.</p> <p>Methods</p> <p>We conducted a cross-sectional study of 154 United States primary care physicians to assess the effect of use of eGFR (versus creatinine) on the timing of their subspecialty referrals. Primary care physicians completed a questionnaire featuring questions regarding a hypothetical White or African American patient with progressing CKD. We asked primary care physicians to identify the serum creatinine and eGFR levels at which they would recommend patients like the hypothetical patient be referred for subspecialty evaluation. We assessed significant improvement in the timing [from eGFR < 30 to ≄ 30 mL/min/1.73m<sup>2</sup>) of their recommended referrals based on their use of creatinine versus eGFR.</p> <p>Results</p> <p>Primary care physicians recommended subspecialty referrals later (CKD more advanced) when using creatinine versus eGFR to assess kidney function [median eGFR 32 versus 55 mL/min/1.73m<sup>2</sup>, p < 0.001]. Forty percent of primary care physicians significantly improved the timing of their referrals when basing their recommendations on eGFR. Improved timing occurred more frequently among primary care physicians practicing in academic (versus non-academic) practices or presented with White (versus African American) hypothetical patients [adjusted percentage(95% CI): 70% (45-87) versus 37% (reference) and 57% (39-73) versus 25% (reference), respectively, both p ≀ 0.01).</p> <p>Conclusions</p> <p>Primary care physicians recommended subspecialty referrals earlier when using eGFR (versus creatinine) to assess kidney function. Enhanced use of eGFR by primary care physicians' could lead to more timely subspecialty care and improved clinical outcomes for patients with CKD.</p
    • 

    corecore