97 research outputs found
Temporal Variability Modulates pH Impact On Larval Sea Urchin Development: Themed Issue Article: Biomechanics And Climate Change
Coastal organisms reside in highly dynamic habitats. Global climate change is expected to alter not only the mean of the physical conditions experienced but also the frequencies and/or the magnitude of fluctuations of environmental factors. Understanding responses in an ecologically relevant context is essential for formulating management strategies. In particular, there are increasing suggestions that exposure to fluctuations could alleviate the impact of climate change-related stressors by selecting for plasticity that may help acclimatization to future conditions. However, it remains unclear whether the presence of fluctuations alone is sufficient to confer such effects or whether the pattern of the fluctuations matters. Therefore, we investigated the role of frequency and initial conditions of the fluctuations on performance by exposing larval sea urchin Heliocidaris crassispina to either constant or fluctuating pH. Reduced pH alone (pH 7.3 vs 8.0) did not affect larval mortality but reduced the growth of larval arms in the static pH treatments. Changes in morphology could affect the swimming mechanics for these small organisms, and geometric morphometric analysis further suggested an overall shape change such that acidified larvae had more U-shaped bodies and shorter arms, which would help maintain stability in moving water. The relative negative impact of lower pH, computed as log response ratio, on larval arm development was smaller when larvae were exposed to pH fluctuations, especially when the change was less frequent (48- vs 24-h cycle). Furthermore, larvae experiencing an initial pH drop, i.e. those where the cycle started at pH 8.0, were more negatively impacted compared with those kept at an initial pH of 7.3 before the cycling started. Our observations suggest that larval responses to climate change stress could not be easily predicted from mean conditions. Instead, to better predict organismal performance in the future ocean, monitoring and investigation of the role of real-time environmental fluctuations along the dispersive pathway is key
Evolution Of Feeding Shapes Swimming Kinematics Of Barnacle Naupliar Larvae: A Comparison Between Trophic Modes
A central goal in evolutionary biology is connecting morphological features with ecological functions. For marine invertebrate larvae, appendage movement determines locomotion, feeding, and predator avoidance ability. Barnacle larvae are morphologically diverse, and the morphology of non-feeding lecithotrophic nauplii are distinct from those that are planktotrophic. Lecithotrophic larvae have a more globular body shape and simplified appendages when compared with planktotrophs. However, little is known about whether and how such morphological changes affect kinematics, hydrodynamics, and ecological functions. Here, we compared the nauplii kinematics and hydrodynamics of a lecithotrophic Rhizocephalan species, Polyascus planus, against that of the planktotrophic nauplii of an intertidal barnacle, Tetraclita japonica. High-speed, micro-particle image velocimetry analysis showed that the Polyascus nauplii swam faster and had higher amplitude and more synchronous appendage beating than the Tetraclita nauplii. This fast swimming was accompanied by a faster attenuation of induced flow with distance, suggesting reduced predation risk. Tetraclita nauplii had more efficient per beat cycles with less backward displacement during the recovery stroke. This “anchoring effect” resulted from the anti-phase beating of appendages. This movement, together with a high-drag body form, likely helps direct the suction flow toward the ventral food capturing area. In sum, the tradeoff between swimming speed and predation risks may have been an important factor in the evolution of the observed larval forms
A Tail’s Tale: Biomechanical Roles Of Dorsal Thoracic Spine Of Barnacle Nauplii
Many marine invertebrates have complex life histories that begin with a planktonic larval stage. Similar to other plankton, these larval invertebrates often possess protruding body extensions, but their function beyond predator deterrence is not well-documented. For example, the planktonic nauplii of crustaceans have spines. Using the epibiotic pedunculate barnacle Octolasmis spp., we investigated how the dorsal thoracic spine affects swimming and fluid disturbance by comparing nauplii with their spines partially removed against those with intact spines. Our motion analysis showed that amputated Octolasmis spp. swam slower, in jerkier trajectories, and were less efficient per stroke cycle than those with intact spines. Amputees showed alterations in limb beat pattern: larger beat amplitude, increased phase lag, and reduced contralateral symmetry. These changes might partially help increase propulsive force generation and streamline the flow, but were insufficient to restore full function. Particle image velocimetry further showed that amputees had a larger relative area of influence, implying elevated risk by rheotactic predator. Body extensions and their interactions with limb motion play important biomechanical roles in shaping larval performance, which likely influences the evolution of form
Ontogenetic changes in larval swimming and orientation of pre-competent sea urchin Arbacia punctulata in turbulence
© The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Experimental Biology 219 (2016): 1303-1310, doi:10.1242/jeb.129502.Many marine organisms have complex life histories, having sessile adults and relying on the planktonic larvae for dispersal. Larvae swim and disperse in a complex fluid environment and the effect of ambient flow on larval behavior could in turn impact their survival and transport. However, to date, most studies on larvae–flow interactions have focused on competent larvae near settlement. We examined the importance of flow on early larval stages by studying how local flow and ontogeny influence swimming behavior in pre-competent larval sea urchins, Arbacia punctulata. We exposed larval urchins to grid-stirred turbulence and recorded their behavior at two stages (4- and 6-armed plutei) in three turbulence regimes. Using particle image velocimetry to quantify and subtract local flow, we tested the hypothesis that larvae respond to turbulence by increasing swimming speed, and that the increase varies with ontogeny. Swimming speed increased with turbulence for both 4- and 6-armed larvae, but their responses differed in terms of vertical swimming velocity. 4-Armed larvae swam most strongly upward in the unforced flow regime, while 6-armed larvae swam most strongly upward in weakly forced flow. Increased turbulence intensity also decreased the relative time that larvae spent in their typical upright orientation. 6-Armed larvae were tilted more frequently in turbulence compared with 4-armed larvae. This observation suggests that as larvae increase in size and add pairs of arms, they are more likely to be passively re-oriented by moving water, rather than being stabilized (by mechanisms associated with increased mass), potentially leading to differential transport. The positive relationship between swimming speed and larval orientation angle suggests that there was also an active response to tilting in turbulence. Our results highlight the importance of turbulence to planktonic larvae, not just during settlement but also in earlier stages through morphology–flow interactions.This work was supported by the National Science Foundation [OCE-0850419] and the National Oceanic and Atmospheric Administration Sea Grant [NA14OAR4170074]. K.Y.K.C. was supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution (WHOI), with funding provided by the Coastal Ocean Institute, the Croucher Foundation and the Royal Swedish Academy of Sciences. K.Y.K.C. is currently funded by the Croucher Foundation. Additional funding was provided to L.S.M. through the WHOI Ocean Life Fellowship and discretionary WHOI funds, and to E.J.A. through the faculty sabbatical program at Grove City College
Parentage Influence On Gene Expression Under Acidification Revealed Through Single-Embryo Sequencing
The dissolution of anthropogenic carbon dioxide (CO2) in seawater has altered its carbonate chemistry in the process of ocean acidification (OA). OA affects the viability of marine species. In particular, calcifying organisms and their early planktonic larval stages are considered vulnerable. These organisms often utilize energy reserves for metabolism rather than growth and calcification as supported by bulk RNA-sequencing (RNA-seq) experiments. Yet, transcriptomic profiling of a bulk sample reflects the average gene expression of the population, neglecting the variations between individuals, which forms the basis for natural selection. Here, we used single-embryo RNA-seq on larval sea urchin Heliocidaris crassispina, which is a commercially and ecologically valuable species in East Asia, to document gene expression changes to OA at an individual and family level. Three paternal half-sibs groups were fertilized and exposed to 3 pH conditions (ambient pH 8.0, 7.7 and 7.4) for 12 h prior to sequencing and oxygen consumption assay. The resulting transcriptomic profile of all embryos can be distinguished into four clusters, with differences in gene expressions that govern biomineralization, cell differentiation and patterning, as well as metabolism. While these responses were influenced by pH conditions, the male identities also had an effect. Specifically, a regression model and goodness of fit tests indicated a significant interaction between sire and pH on the probability of embryo membership in different clusters of gene expression. The single-embryo RNA-seq approach is promising in climate stressor research because not only does it highlight potential impacts before phenotypic changes were observed, but it also highlights variations between individuals and lineages, thus enabling a better determination of evolutionary potential
Robust estimation of bacterial cell count from optical density
Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19
IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19.
Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19.
DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022).
INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days.
MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes.
RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively).
CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes.
TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study
Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat
- …