49,860 research outputs found

    Instability of three dimensional conformally dressed black hole

    Get PDF
    The three dimensional black hole solution of Einstein equations with negative cosmological constant coupled to a conformal scalar field is proved to be unstable against linear circularly symmetric perturbations.Comment: 5 pages, REVTe

    The signature of the magnetorotational instability in the Reynolds and Maxwell stress tensors in accretion discs

    Full text link
    The magnetorotational instability is thought to be responsible for the generation of magnetohydrodynamic turbulence that leads to enhanced outward angular momentum transport in accretion discs. Here, we present the first formal analytical proof showing that, during the exponential growth of the instability, the mean (averaged over the disc scale-height) Reynolds stress is always positive, the mean Maxwell stress is always negative, and hence the mean total stress is positive and leads to a net outward flux of angular momentum. More importantly, we show that the ratio of the Maxwell to the Reynolds stresses during the late times of the exponential growth of the instability is determined only by the local shear and does not depend on the initial spectrum of perturbations or the strength of the seed magnetic. Even though we derived these properties of the stress tensors for the exponential growth of the instability in incompressible flows, numerical simulations of shearing boxes show that this characteristic is qualitatively preserved under more general conditions, even during the saturated turbulent state generated by the instability.Comment: 9 pages, 4 figures. Minor revisions. Accepted for publication in MNRA

    A mini-array for large air showers

    Get PDF
    A mini-array that utilizes the Linsley effect is proposed for the measurement of large air showers. An estimate of the detectable shower rates for various shower sizes is made. Details of the detection and data collection systems are also described

    Quantum pumping in graphene nanoribbons at resonant transmission

    Full text link
    Adiabatic quantum charge pumping in graphene nanoribbon double barrier structures with armchair and zigzag edges in the resonant transmission regime is analyzed. Using recursive Green's function method we numerically calculate the pumped charge for pumping contours encircling a resonance. We find that for armchair ribbons the whole resonance line contributes to the pumping of a single electron (ignoring double spin degeneracy) per cycle through the device. The case of zigzag ribbons is more interesting due to zero-conductance resonances. These resonances separate the whole resonance line into several parts, each of which corresponds to the pumping of a single electron through the device. Moreover, in contrast to armchair ribbons, one electron can be pumped from the left lead to the right one or backwards. The current direction depends on the particular part of the resonance line encircled by the pumping contour.Comment: 6 pages, 5 figures. This is an author-created, un-copyedited version of an article accepted for publication in EPL. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The definitive publisher authenticated version is available online at 10.1209/0295-5075/92/4701

    Exact States in Waveguides With Periodically Modulated Nonlinearity

    Get PDF
    We introduce a one-dimensional model based on the nonlinear Schrodinger/Gross-Pitaevskii equation where the local nonlinearity is subject to spatially periodic modulation in terms of the Jacobi dn function, with three free parameters including the period, amplitude, and internal form-factor. An exact periodic solution is found for each set of parameters and, which is more important for physical realizations, we solve the inverse problem and predict the period and amplitude of the modulation that yields a particular exact spatially periodic state. Numerical stability analysis demonstrates that the periodic states become modulationally unstable for large periods, and regain stability in the limit of an infinite period, which corresponds to a bright soliton pinned to a localized nonlinearity-modulation pattern. Exact dark-bright soliton complex in a coupled system with a localized modulation structure is also briefly considered . The system can be realized in planar optical waveguides and cigar-shaped atomic Bose-Einstein condensates.Comment: EPL, in pres

    A New Algorithm for Protein Design

    Full text link
    We apply a new approach to the reverse protein folding problem. Our method uses a minimization function in the design process which is different from the energy function used for folding. For a lattice model, we show that this new approach produces sequences that are likely to fold into desired structures. Our method is a significant improvement over previous attempts which used the energy function for designing sequences.Comment: 10 pages latex 2.09 no figures. Use uufiles to decod

    Statistical variability in implant-free quantum-well MOSFETs with InGaAs and Ge: a comparative 3D simulation study

    Get PDF
    Introduction of high mobility channel materials including III-Vs and Ge into future CMOS generations offer the potential for enhanced transport properties compared to Si. The Implant Free Quantum Well (IFQW) architecture offers an attractive design to introduce these materials, providing excellent electrostatic integrity. Statistical variability introduced by the discreteness of charge and granularity of matter has become a key factor for current and future generations of MOSFETs and in this work numerical simulations are used to critically assess the statistical variability in IFQW transistors and compare results with equivalent conventional Si ‘bulk’ MOSFETs

    A Solvable Model of Two-Dimensional Dilaton-Gravity Coupled to a Massless Scalar Field

    Get PDF
    We present a solvable model of two-dimensional dilaton-gravity coupled to a massless scalar field. We locally integrate the field equations and briefly discuss the properties of the solutions. For a particular choice of the coupling between the dilaton and the scalar field the model can be interpreted as the two-dimensional effective theory of 2+1 cylindrical gravity minimally coupled to a massless scalar field.Comment: 6 pages, RevTeX, to be published in Phys. Rev.
    corecore