240 research outputs found
Heterogeneous Multi-task Learning for Human Pose Estimation with Deep Convolutional Neural Network
We propose an heterogeneous multi-task learning framework for human pose
estimation from monocular image with deep convolutional neural network. In
particular, we simultaneously learn a pose-joint regressor and a sliding-window
body-part detector in a deep network architecture. We show that including the
body-part detection task helps to regularize the network, directing it to
converge to a good solution. We report competitive and state-of-art results on
several data sets. We also empirically show that the learned neurons in the
middle layer of our network are tuned to localized body parts
- …