2,736 research outputs found
A portable widefield fundus camera with high dynamic range imaging capability
Fundus photography is indispensable for clinical detection and management of
eye diseases. Limited image contrast and field of view (FOV) are common
limitations of conventional fundus cameras, making it difficult to detect
subtle abnormalities at the early stages of eye diseases. Further improvements
of image contrast and FOV coverage are important to improve early disease
detection and reliable treatment assessment. We report here a portable fundus
camera, with a wide FOV and high dynamic range (HDR) imaging capabilities.
Miniaturized indirect ophthalmoscopy illumination was employed to achieve the
portable design for nonmydriatic, widefield fundus photography. Orthogonal
polarization control was used to eliminate illumination reflectance artifact.
With independent power controls, three fundus images were sequentially acquired
and fused to achieve HDR function for local image contrast enhancement. A
101{\deg} eye-angle (67{\deg} visual-angle) snapshot FOV was achieved for
nonmydriatic fundus photography. The effective FOV can be readily expanded up
to 190{\deg} eye-angle (134{\deg} visual-angle) with the aid of a fixation
target, without the need of pharmacologic pupillary dilation. The effectiveness
of HDR imaging was validated with both normal healthy and pathologic eyes,
compared to a conventional fundus camera.Comment: 12 pages, 8 figure
Binding loci of RelA-containing nuclear factor-kappaB dimers in promoter regions of PHM1-31 myometrial smooth muscle cells.
Human parturition is associated with many pro-inflammatory mediators which are regulated by the nuclear factor-kappaB (NF-κB) family of transcription factors. In the present study, we employed a ChIP-on-chip approach to define genomic loci within chromatin of PHM1-31 myometrial cells that were occupied by RelA-containing NF-κB dimers in response to a TNF stimulation of 1 h. In TNF-stimulated PHM1-31 cells, anti-RelA serum enriched 13 300 chromatin regions; importantly, 11 110 regions were also enriched by anti-RelA antibodies in the absence of TNF. DNA sequences in these regions, from both unstimulated or TNF-stimulated PHM1-31 cultures, were associated with genic regions including IκBα, COX-2, IL6RN, Jun and KCNMB3. TNF-induced binding events at a consensus κB site numbered 1667; these were represented by 112 different instances of the consensus κB motif. Of the 1667 consensus κB motif occurrences, 770 (46.2%) were identified within intronic regions. In unstimulated PHM1-31 cells, anti-RelA-serum-enriched regions were associated with sequences corresponding to open reading frames of ion channel subunit genes including CACNB3 and KCNB1. Moreover, in unstimulated cells, the consensus κB site was identified 2116 times, being defined by 103 different sequence instances of this motif. Of these 2116 consensus κB motifs, 1089 (51.5%) were identified within intronic regions. Parallel expression array analyses in PHM1-31 cultures demonstrated that TNF stimulated a >2-fold induction in 51 genes and a fold repression of >1.5 in 18 others. We identified 14 anti-RelA-serum-enriched genomic regions that correlated with 17 TNF-inducible genes, such as COX2, Egr-1, Jun, IκBα and IL6, as well as five regions associated with TNF-mediated gene repression, including Col1A2
Recommended from our members
Succession of physiological stages hallmarks the transcriptomic response of the fungus Aspergillus niger to lignocellulose.
BackgroundUnderstanding how fungi degrade lignocellulose is a cornerstone of improving renewables-based biotechnology, in particular for the production of hydrolytic enzymes. Considerable progress has been made in investigating fungal degradation during time-points where CAZyme expression peaks. However, a robust understanding of the fungal survival strategies over its life time on lignocellulose is thereby missed. Here we aimed to uncover the physiological responses of the biotechnological workhorse and enzyme producer Aspergillus niger over its life time to six substrates important for biofuel production.ResultsWe analysed the response of A. niger to the feedstock Miscanthus and compared it with our previous study on wheat straw, alone or in combination with hydrothermal or ionic liquid feedstock pretreatments. Conserved (substrate-independent) metabolic responses as well as those affected by pretreatment and feedstock were identified via multivariate analysis of genome-wide transcriptomics combined with targeted transcript and protein analyses and mapping to a metabolic model. Initial exposure to all substrates increased fatty acid beta-oxidation and lipid metabolism transcripts. In a strain carrying a deletion of the ortholog of the Aspergillus nidulans fatty acid beta-oxidation transcriptional regulator farA, there was a reduction in expression of selected lignocellulose degradative CAZyme-encoding genes suggesting that beta-oxidation contributes to adaptation to lignocellulose. Mannan degradation expression was wheat straw feedstock-dependent and pectin degradation was higher on the untreated substrates. In the later life stages, known and novel secondary metabolite gene clusters were activated, which are of high interest due to their potential to synthesize bioactive compounds.ConclusionIn this study, which includes the first transcriptional response of Aspergilli to Miscanthus, we highlighted that life time as well as substrate composition and structure (via variations in pretreatment and feedstock) influence the fungal responses to lignocellulose. We also demonstrated that the fungal response contains physiological stages that are conserved across substrates and are typically found outside of the conditions with high CAZyme expression, as exemplified by the stages that are dominated by lipid and secondary metabolism
Algorithmic Complexity for Short Binary Strings Applied to Psychology: A Primer
Since human randomness production has been studied and widely used to assess
executive functions (especially inhibition), many measures have been suggested
to assess the degree to which a sequence is random-like. However, each of them
focuses on one feature of randomness, leading authors to have to use multiple
measures. Here we describe and advocate for the use of the accepted universal
measure for randomness based on algorithmic complexity, by means of a novel
previously presented technique using the the definition of algorithmic
probability. A re-analysis of the classical Radio Zenith data in the light of
the proposed measure and methodology is provided as a study case of an
application.Comment: To appear in Behavior Research Method
Mutual shaping in the design of socially assistive robots: A case study on social robots for therapy
This paper offers a case study in undertaking a mutual shaping approach to the design of socially assistive robots. We consider the use of social robots in therapy, and we present our results regarding this application, but the approach is generalisable. Our methodology combines elements of user-centered and participatory design with a focus on mutual learning. We present it in full alongside a more general guide for application to other areas. This approach led to valuable results concerning mutual shaping effects and societal factors regarding the use of such robots early in the design process. We also measured a significant shift in participant robot acceptance pre-/post-study, demonstrating that our approach led to the two-way sharing and shaping of knowledge, ideas and acceptance
An Evolutionarily Conserved Function of Polycomb Silences the MHC Class I Antigen Presentation Pathway and Enables Immune Evasion in Cancer.
Loss of MHC class I (MHC-I) antigen presentation in cancer cells can elicit immunotherapy resistance. A genome-wide CRISPR/Cas9 screen identified an evolutionarily conserved function of polycomb repressive complex 2 (PRC2) that mediates coordinated transcriptional silencing of the MHC-I antigen processing pathway (MHC-I APP), promoting evasion of T cell-mediated immunity. MHC-I APP gene promoters in MHC-I low cancers harbor bivalent activating H3K4me3 and repressive H3K27me3 histone modifications, silencing basal MHC-I expression and restricting cytokine-induced upregulation. Bivalent chromatin at MHC-I APP genes is a normal developmental process active in embryonic stem cells and maintained during neural progenitor differentiation. This physiological MHC-I silencing highlights a conserved mechanism by which cancers arising from these primitive tissues exploit PRC2 activity to enable immune evasion.Cancer Research UK Clinician Scientist Fellowship C53779/A20097 (M.L.B), Leukaemia Foundation Australia Senior Fellowship and Howard Hughes Medical Institute International Research Scholarship 55008729 (M.A.D), Peter and Julie Alston Centenary fellowship (K.D.S.), Wellcome Trust Principal Research Fellowship 101835/Z/13/Z (P.J.L), Peter MacCallum Postgraduate Scholarship (C.E.S), NHMRC Postgraduate Scholarship (K.L.C.), Maddie Riewoldt's Vision 064728 (Y-C.C), Victorian Cancer Agency (E.Y.N.L), CSL Centenary fellowship (S-J.D), National Breast Cancer Foundation Fellowship ECF-17-005 (P.A.B.), Addenbrooke’s Charitable Trust and NIHR Cambridge BRC (M.L.B., P.J.L), NHMRC grant 1085015, 1106444 (M.A.D) and 1128984 (M.A.D, S-J.D)
- …