27 research outputs found

    Crystallographic investigation of the cooperative interaction between trimethoprim, reduced cofactor and dihydrofolate reductase.

    Get PDF
    The structure of the complex between E. coli (RT500) form I dihydrofolate reductase, the antibacterial trimethoprim and NADPH has been determined by X-ray crystallography. The inhibitor and cofactor are in mutual contact. A flexible chain segment which includes Met 20 is in contact with the inhibitor in the presence of NADPH, but more distant in its absence. By contrast, the inhibitor conformation is little changed with NADPH present. We discuss these observations with regard to the mutually cooperative binding of these ligands to the protein, and to the associated enhancement of inhibitory selectivity shown by trimethoprim for bacterial as opposed to vertebrate enzyme

    Pyrrolo[2,3-d]pyrimidines and pyrido[2,3-d]pyrimidines as conformationally restricted analogues of the antibacterial agent trimethoprim.

    No full text
    Conformationally restricted analogues of the antibacterial agent trimethoprim (TMP) were designed to mimic the conformation of drug observed in its complex with bacterial dihydrofolate reductase (DHFR). This conformation of TMP was achieved by linking the 4-amino function to the methylene group by one- and two-carbon bridges. A pyrrolo[2,3-d]pyrimidine, a dihydro analogue, and a tetrahydropyrido[2,3-d]pyrimidine were synthesized and tested as inhibitors of DHFR. One analogue showed activity equivalent to that of TMP against DHFR from three species of bacteria. An X-ray crystal structure of this inhibitor bound to Escherichia coli DHFR was determined to evaluate the structural consequences of the conformational restriction

    The structure of Pneumocystis carinii dihydrofolate reductase to 1.9 A resolution.

    No full text
    BACKGROUND: The fungal pathogen Pneumocystis carinii causes a pneumonia which is an opportunistic infection of AIDS patients. Current therapy includes the dihydrofolate reductase (DHFR) inhibitor trimethoprim which is selective but only a relatively weak inhibitor of the enzyme for P. carinii. Determination of the three-dimensional structure of the enzyme should form the basis for design of more potent and selective therapeutic agents for treatment of the disease. RESULTS: The structure of P. carinii DHFR in complex with reduced nicotinamide adenine dinucleotide phosphate and trimethoprim has accordingly been solved by X-ray crystallography. The structure of the ternary complex has been refined at 1.86 A resolution (R = 0.181). A similar ternary complex with piritrexim (which is a tighter binding, but less selective inhibitor) has also been solved, as has the binary complex holoenzyme, both at 2.5 A resolution. CONCLUSIONS: These structures show how two drugs interact with a fungal DHFR. A comparison of the three-dimensional structure of this relatively large DHFR with bacterial or mammalian enzyme-inhibitor complexes determined previously highlights some additional secondary structure elements in this particular enzyme species. These comparisons provide further insight into the principles governing DHFR-inhibitor interaction, in which the volume of the active site appears to determine the strength of inhibitor binding

    Crystal structure of the anti-bacterial sulfonamide drug target dihydropteroate synthase.

    No full text
    Sulfonamides were amongst the first clinically useful antibacterial agents to be discovered. The identification of sulfanilamide as the active component of the dye Prontosil rubrum led to the synthesis of clinically useful analogues. Today sulfamethoxazole (in combination with trimethoprim), is used to treat urinary tract infections caused by bacteria such as Escherichia coli and is also a first-line treatment for pneumonia caused by the fungus Pneumocystis carinii, a common condition in AIDS patients. The site of action is the de novo folate biosynthesis enzyme dihydropteroate synthase (DHPS) where sulfonamides act as analogues of one of the substrates, para-aminobenzoic acid (pABA). We report here the crystal structure of E.coli DHPS at 2.0 A resolution refined to an R-factor of 0.185. The single domain of 282 residues forms an eight-stranded alpha/beta-barrel. The 7,8-dihydropterin pyrophosphate (DHPPP) substrate binds in a deep cleft in the barrel, whilst sulfanilamide binds closer to the surface. The DHPPP ligand site is highly conserved amongst prokaryotic and eukaryotic DHPSs

    2.0 A X-ray structure of the ternary complex of 7,8-dihydro-6-hydroxymethylpterinpyrophosphokinase from Escherichia coli with ATP and a substrate analogue.

    Get PDF
    The X-ray crystal structure of 7,8-dihydro-6-hydroxymethylpterinpyrophosphokinase (PPPK) in a ternary complex with ATP and a pterin analogue has been solved to 2.0 A resolution, giving, for the first time, detailed information of the PPPK/ATP intermolecular interactions and the accompanying conformational change. The first 100 residues of the 158 residue peptide contain a betaalpha betabeta alphabeta motif present in several other proteins including nucleoside diphosphate kinase. Comparative sequence examination of a wide range of prokaryotic and lower eukaryotic species confirms the conservation of the PPPK active site, indicating the value of this de novo folate biosynthesis pathway enzyme as a potential target for the development of novel broad-spectrum anti-infective agents

    Preliminary crystallographic data for Pneumocystis carinii dihydrofolate reductase.

    No full text
    Dihydrofolate reductase from Pneumocystis carinii has been crystallized in a form suitable for high resolution X-ray diffraction studies. Recombinant enzyme that had been refolded following solubilization in guanidinium hydrochloride was crystallized as both a ternary complex with the cofactor NADPH and the inhibitor trimethoprim as well as a binary complex with NADPH. The two types of complex crystallized isomorphously from polyethylene glycol using sitting-drop vapour diffusion. The crystals were of space group P2(1) with unit cell parameters, a = 69.9 A, b = 43.6 A, c = 37.6 A, beta = 117.7 degrees, with one molecule per asymmetric unit. The crystals diffracted to 1.8 A resolution

    Refined crystal structures of Escherichia coli and chicken liver dihydrofolate reductase containing bound trimethoprim.

    No full text
    Refined crystal structures are reported for complexes of Escherichia coli and chicken dihydrofolate reductase containing the antibiotic trimethoprim (TMP). Structural comparison of these two complexes reveals major geometrical differences in TMP binding that may be important in understanding the stereo-chemical basis of this inhibitor's selectivity for bacterial dihydrofolate reductases. For TMP bound to chicken dihydrofolate reductase we observe an altered binding geometry in which the 2,4-diaminopyrimidine occupies a position in closer proximity (by approximately 1 A) to helix alpha B compared to the pyrimidine position for TMP or methotrexate bound to E. coli dihydrofolate reductase. One important consequence of this deeper insertion of the pyrimidine into the active site of chicken dihydrofolate reductase is the loss of a potential hydrogen bond that would otherwise form between the carbonyl oxygen of Val-115 and the inhibitor's 4-amino group. In addition, for TMP bound to E. coli dihydrofolate reductase, the inhibitor's benzyl side chain is positioned low in the active-site pocket pointing down toward the nicotinamide-binding site, whereas, in chicken dihydrofolate reductase, the benzyl group is accommodated in a side channel running upward and away from the cofactor. As a result, the torsion angles about the C5-C7 and C7-C1' bonds for TMP bound to the bacterial reductase (177 degrees, 76 degrees) differ significantly from the corresponding angles for TMP bound to chicken dihydrofolate reductase (-85 degrees, 102 degrees). Finally, when TMP binds to the chicken holoenzyme, the Tyr-31 side chain undergoes a large conformational change (average movement is 5.4 A for all atoms beyond C beta), rotating down into a new position where it hydrogen bonds via an intervening water molecule to the backbone carbonyl oxygen of Trp-24
    corecore