3,045 research outputs found
Eminent Pearsonians: Britishness, Anti-Britishness, and Canadianism
Britishness in mid-Twentieth century Canada is usually treated as a fading overseas tie, a foreign allegiance, or a mark of dependency and colonial immaturity. There is a tendency to assume a kind of Manichean division between pro-British and anti-British: either in favour of Canadian independence, or beholden to the British connection, and to draw too sharp a distinction between what was “British” and what was genuinely “Canadian.” However, a study of the Eminent Pearsonians – three generations of Canadians whose anglophilia and Canadianness were intermingled – suggests that they were neither purely anglophile nor quite anglophobe but a tertium quid. Britishness and Canadianism were far more interpenetrated than is commonly thought. The nationalism and internationalism of Pearson and his contemporaries adumbrated their adoptive English liberalism and British liberal imperialism. Indeed, Britishness was interwoven into the Canadianness of the actors, bit-players, and stage-hands of all classes, ethnicities and genders in the Canadian pageant. In the positive sense of the term, Canadianism was an excrescence of Britishness.On a habituellement interprété la « britannicité » du Canada au milieu du XXe siècle comme un lien outre-atlantique évanescent, un sentiment d’allégeance à un pays étranger, ou un signe de dépendance et d’immaturité coloniale. On a tendance à diviser de façon manichéenne les pro- et les antibritanniques – les uns favorables au lien britannique, les autres, à l’indépendance du Canada – et de distinguer sans nuance ce qui est « britannique » de ce qui est authentiquement « canadien ». Toutefois, une étude portant sur les célèbres Pearsoniens (trois générations de Canadiens qui ont assumé à la fois leur anglophilie et leur « canadianité ») suggère qu’ils n’étaient ni purement anglophiles ni tout à fait anglophobes, mais qu’ils se situaient entre les deux. La britannicité et la canadianité s’interpénétraient bien plus qu’on le pense généralement. Le nationalisme et l’internationalisme pratiqués par Pearson et ses contemporains étaient teintés de libéralisme anglais et d’impérialisme libéral britannique. En fait, la britannicité a coloré la canadianité de tous ceux et celles qui, de près ou de loin, et quelles qu’aient été leurs origines sociales et ethniques, ont participé à l’aventure historique canadienne. Dans le sens positif du terme, le canadianisme était une excroissance de la britannicité
Can we see pulsars around Sgr A*? - The latest searches with the Effelsberg telescope
Radio pulsars in relativistic binary systems are unique tools to study the
curved space-time around massive compact objects. The discovery of a pulsar
closely orbiting the super-massive black hole at the centre of our Galaxy, Sgr
A*, would provide a superb test-bed for gravitational physics. To date, the
absence of any radio pulsar discoveries within a few arc minutes of Sgr A* has
been explained by one principal factor: extreme scattering of radio waves
caused by inhomogeneities in the ionized component of the interstellar medium
in the central 100 pc around Sgr A*. Scattering, which causes temporal
broadening of pulses, can only be mitigated by observing at higher frequencies.
Here we describe recent searches of the Galactic centre region performed at a
frequency of 18.95 GHz with the Effelsberg radio telescope.Comment: 3 pages, 2 figures, Proceedings of IAUS 291 "Neutron Stars and
Pulsars: Challenges and Opportunities after 80 years", 201
The Geant4-DNA project
The Geant4-DNA project proposes to develop an open-source simulation software
based and fully included in the general-purpose Geant4 Monte Carlo simulation
toolkit. The main objective of this software is to simulate biological damages
induced by ionising radiation at the cellular and sub-cellular scale. This
project was originally initiated by the European Space Agency for the
prediction of deleterious effects of radiation that may affect astronauts
during future long duration space exploration missions. In this paper, the
Geant4-DNA collaboration presents an overview of the whole ongoing project,
including its most recent developments already available in the last Geant4
public release (9.3 BETA), as well as an illustration example simulating the
direct irradiation of a chromatin fibre. Expected extensions involving several
research domains, such as particle physics, chemistry and cellular and
molecular biology, within a fully interdiciplinary activity of the Geant4
collaboration are also discussed.Comment: presented by S. Incerti at the ASIA SIMULATION CONFERENCE 2009,
October 7-9, 2009, Ritsumeikan University, Shiga, Japa
[Formian 2 and a Formian Function for Processing Polyhedric Configurations]
The work began in October 1994 with the following objectives: (1) to produce an improved version of the programming language Formian; and (2) to create a means for computer aided handling of polyhedric configurations including the geodesic forms of all kinds. A new version of Formian, referred to as Formian 2, is being implemented to operate in the Windows 95 environment. It is an ideal tool for configuration management in a convenient and user-friendly manner. The second objective was achieved by creating a standard Formian function that allows convenient handling of all types of polyhedric configurations. In particular, the focus of attention is on polyhedric configurations that are of importance in architectural and structural engineering fields. The natural medium for processing of polyhedric configurations is a programming language that incorporates the concepts of 'formex algebra'. Formian is such a programming language in which the processing of polyhedric configurations can be carried out using the standard elements of the language. A description of this function is included in a chapter for a book entitled 'Beyond the Cube: the Architecture of space Frames and Polyhedra'. A copy of this chapter is appended
Sediment Sorting and Rounding in a Basaltic Glacio-Fluvio-Aeolian Environment: hrisjkull Glacier, Iceland
Sediments and sedimentary rocks preserve a rich history of environment and climate. Identifying these signals requires an understanding of the physical and chemical processes that have affected sedimentary deposits [1]. Such processes include sorting and rounding during transport and chemical alteration through weathering and diagenesis. Although these processes have long been studied in quartz-dominated sedimentary systems [2], a lack of studies of basaltic sedimentary systems limits our interpretations of the environment and climate where mafic source rocks dominate, such as on Mars [3,4]. As part of the SAND-E: Semi-Autonomous Navigation for Detrital Environments project [5], which uses robotic operations to examine physical and chemical changes to sediments in basaltic glacio-fluvialaeolian environments, this research studies changes in sorting and rounding of fluvial-aeolian sediments along a glacier-proximal-to-glacier-distal transect in the outwash-plain of the risjkull glacier in SW Iceland (Fig. 1
Using XRD to Characterize Sediment Sorting in a Mars Analog Glacio-Fluvio-Eolian Basaltic Sedimentary System in Iceland
The martian surface has a primarily basaltic composition and is dominated by sedimentary deposits. Ancient layered sedimentary rocks have been identified across the planet from orbit, have been studied in situ by the Mars Exploration Rovers and the Mars Science Laboratory rover, and will be studied by the Mars 2020 rover. These ancient sedimentary rocks were deposited in fluvial, lacustrine, and eolian environments during a warmer and wetter era on Mars. It is important to study the composition of sediments in Mars analog environments to characterize how minerals in basaltic sedimentary systems are sorted and/or aqueously altered. This information can help us better interpret sedimentary processes from similar deposits on Mars and derive information about the igneous source rocks. Sediment sorting has been studied extensively on Earth, but not typically in basaltic environments. Previous work has addressed sorting of basaltic sediments through experimental techniques and in modern eolian basaltic systems and aqueous alteration in subglacial and proglacial environments. We add to this body of research by studying sediment sorting and aqueous alteration in a glacio-fluvio-eolian basaltic system in southwest Iceland
Overview and Initial Results of SAND-E: Semi-Autonomous Navigation for Detrital Environments
Unmanned aerial systems (UAS) and automated terrain analysis for science and navigation are new technologies for planetary exploration. The Mars Helicopter will fly with the Mars2020 rover, the Dragonfly quadcopter will explore Titan, and Soil Properties and Object Classification (SPOC) software will be used for path planning and navigation on the Mars2020 rover. Using an Argo J5 rover instrumented with stereo cameras and Autonomous Soil Assessment System (ASAS) software, and an off the shelf quadcopter, SAND-E tested the use of automated terrain analysis and UAS data for science operations in a Mars-analog environment in Iceland during July of 2019. Scientifically, we sought to determine changes in the physical and chemical properties of sediments along a glacial-fluvial-aeolian transport pathway. Operationally, we tested rover mission-like scenarios that included UAS images and classified terrain images. Here, we present the initial results for both the operations and science elements of the study. Site Selection: A goal of SAND-E is examine sorting and alteration of sediments in fluvial and aeolian environments in both mineral-dominated and glass-dominated basaltic settings. During the first year of the project we focused on a mineral-dominated environment. Selection of the location was based on prior publications that indicated our selected region had a greater abundance of crystalline sediments than other areas fluvial-aeolian settings in Iceland. Other criteria included the presence of both fluvial and aeolian landforms along a transport pathway such that the sediments in transport could be linked to their source rocks. We chose the Skjaldbreidauhraun glacial outwash plain, which sits at the base of Thrisjkull glacier. The site is 30 km north of Thingvellir National Park and ~2 hours from Reykjavik. The outwash plain is fed by two small catchments that drain from the base of the glacier and cut through hyaloclastite and shield volcano bedrock. The drainage progresses from steep alluvial fans near the glacier into a low-sloping fluvial braidplain that becomes confined by the Skjaldbreidur shield volcano and creates a shallow canyon cut into lava bedrock. The fluvial system was a typical braided alluvial environment composed pebble- and cobble-bedded longitudinal bars and sandy channel beds. The river remained active and fluctuated in response to diurnal runoff cycles near the glacier before disappearing into the sandy substrate downstream. The high concentration of suspended sediment in the river was evident by the cloudy water and the silt and clay-sized sediments that draped the channel beds after abandonment and created playas in the lowest sloping areas of the catchment. The entire fluvial system was affected by the winds generated by frontal systems and katabatic flows descending the glacier. This resulted in the formation of aeolian lag deposits and a wind-deflation plain where the fluvial system was not active. Wind ripples and drifts formed in abandoned fluvial channels from aeolian reworking of the sand-sized fluvial sediments. The silt- and clay-sized sediments found in fluvial channels, bar tops, and playas generated dust plumes during high wind events. Our operation sought to capture the variability in this system by sampling from the range of fluvial and aeolian features 6.3 km (proximal), 11.3 km (medial), and 14.4 km (distal) along the river from its origin at the base of glacier
Clay Sediments from Basaltic Terrains: Implications for Sedimentary Processes on Mars
The Mars Science Laboratory (MSL) rover, Curiosity, has been traversing across fluvial, lacustrine, and eolian sedimentary rocks since it touched down in 2012. The CheMin X-ray diffractometer (XRD) on board Curiosity has revealed smectite clay minerals in most fluvio-lacustrine samples and abundant X-ray amorphous materials in all samples analyzed to date. For example, mudstones from the Sheepbed member at the base of the stratigraphic section and the lower part of the Murray formation contain on average ~7 to 20 wt% smectite and ~30 to 46 wt% X-ray amorphous abundances. On Earth, smectite and secondary X-ray amorphous materials are juvenile weathering products that are generated in sedimentary environments and ultimately record the interaction between primary igneous minerals and the hydrosphere, atmosphere, and biosphere. For this study, we investigated glacio-fluvio-eolian sediments generated in basaltic terrains as terrestrial analogs for the mudstones from Gale Crater, Mars. This work focuses on the clay sized sediments (<2 m) from these deposits as this grain size hosts the most mineralogically and geochemically altered detritus in sedimentary environments. The goal of investigating basaltic sedimentation is to create a terrestrial reference frame that sheds light on the paleoclimate and paleoaqueous conditions responsible for shaping the ancient sedimentary environments of Mars (e.g., Gale Crater and Jezero Crater)
- …