11 research outputs found

    Effects of nitrogen rates on grain yield and nitrogen agronomic efficiency of durum wheat genotypes under different environments

    Get PDF
    Durum wheat is an important staple food crop in Tunisia and other Mediterranean countries and is grown in various climatic conditions. Production and yield are however severely limited not only by drought events but also by reduced levels of nitrogen fertilisation. A study was carried out at two locations in the sub-humid area of Tunisia: Mateur in 2009–10 and 2010–11 and Beja in 2011–12 and 2012–13 under rainfed conditions. Four durum wheat genotypes (landraces: Bidi, Azizi; improved: Om Rabia, Khiar) were evaluated for nitrogen agronomic efficiency and related agronomic traits under various nitrogen rates: 0, 50, 100, 150, 200 and 250 kgNha−1, with three replications. There was a significant interaction effect (P ≤ 0.001) environments × genotypes ×N treatments for grain yield (GY), biomass yield (BY), harvest index (HI), partial factor productivity of applied nitrogen (PFPN) and nitrogen agronomic use efficiencies (NAE). GY was the most affected trait by nitrogen applied showing an increase of 94% under high N treatment (250 kgNha−1) compared to control plots without N treatments. A significant linear regression exists between GY (0 N) and GY for the different N rates (r =0.70; P < 0.001). This effect was more pronounced for improved genotypes than landraces for all parameters excepting BY and NAEBY. BY showed +11% increase in landraces than improved genotypes. PFPN showed an average decrease of 65% under high-N fertilisation with 10% prevalence for improved genotypes. Landraces tend to promote vegetative growth while grain filling efficiency was higher for improved genotype

    Variation of Grain Yield, Grain Protein Content and Nitrogen Use Efficiency Components under Different Nitrogen Rates in Mediterranean Durum Wheat Genotypes

    Get PDF
    Nitrogen (N) is a crucial nutrient for plant growth and development. To optimize agricultural environments, N fertilizers represent a critical tool to regulate crop productivity. The improvement of nitrogen use efficiency (NUE) represents a promising tool that may enable cereal production to meet future food demand. Wheat reported contrasting behaviors in N utilization showing specific abilities depending on genotype. This study selected two landraces and two improved genotypes from Northern Africa to investigate grain yield (GY), grain protein content (GPC) and NUE. Plants were grown under three levels of N supply: 0, 75, 150 kg N ha−1 and for two consecutive years. Results reported a better NUE (0.40 kg.kg N−1) obtained under 150 kg N ha−1, while N utilization efficiency (NUtE) showed a 13% increase using 75 kg N ha−1 compared with 150 kg N ha−1. Under low nitrogen rate (0 N), crop N supply (CNS) and N uptake efficiency (NUpE) were shown as determinant factors for improved genotypes GY (R2 = 0.72), while NUtE represented the most determinant component for GPC in landraces (R2 = 0.92). Multivariate regression models explained the dependence in GPC on NUE, NUpE, and NUtE. In conclusion, our results recognize GPC and NUtE as suitable selection traits to identify durum wheat with higher NUE

    Nitrogen assimilation under different nitrate nutrition in Tunisian durum wheat landraces and improved genotypes

    No full text
    The effects of nitrate were studied in wheat varieties grown in hydroponic culture: two landraces (Azizi and Bidi), and two improved genotypes (Om Rabiaa and Khiar) from Tunisia. Nitrogen (N) supply generally induced an increase in plant height in all varieties, albeit to a different extent; interestingly, landraces exhibited the same N Uptake Efficiency (NUpE) as other varieties, and a lower Nitrogen Utilization Efficiency (NUtE); in contrast, improved genotypes exhibit a better NUtE at high N. Nitrate reductase activity (NRA) was sensibly and constitutively higher in the improved genotypes in the roots, while NRA was strongly influenced by nitrate supply in the leaves of Bidi landrace. Glutamine synthetase (GS) activity was similar in all varieties studied, in contrast, ferredoxin-glutamate synthase (Fd- GOGAT) activity and occurrence were increased by nitrate. Intriguingly, glutamate dehydrogenase (GDH) activity followed an opposite behaviour with respect to GOGAT. Glucose-6P-dehydrogenase (G6PDH), which provides reductants for N assimilation, increased in roots upon nitrate supply, but the different plastidial and cytosolic isoforms differently changed in the different varieties studied. The data suggest that landraces present higher metabolic flexibility as compared with improved cultivars; therefore, the metabolic changes observed could be suitable for the identification of factors limiting the NUtE
    corecore