14,718 research outputs found
Origin of positive magnetoresistance in small-amplitude unidirectional lateral superlattices
We report quantitative analysis of positive magnetoresistance (PMR) for
unidirectional-lateral-superlattice samples with relatively small periods
(a=92-184 nm) and modulation amplitudes (V_0=0.015-0.25 meV). By comparing
observed PMR's with ones calculated using experimentally obtained mobilities,
quantum mobilities, and V_0's, it is shown that contribution from streaming
orbits (SO) accounts for only small fraction of the total PMR. For small V_0,
the limiting magnetic field B_e of SO can be identified as an inflection point
of the magnetoresistance trace. The major part of PMR is ascribed to drift
velocity arising from incompleted cyclotron orbits obstructed by scatterings.Comment: 12 pages, 9 figures, REVTe
Breakdown of weak-field magnetotransport at a metallic quantum critical point
We show how the collapse of an energy scale in a quantum critical metal can
lead to physics beyond the weak-field limit usually used to compute transport
quantities. For a density-wave transition we show that the presence of a finite
magnetic field at the critical point leads to discontinuities in the transport
coefficients as temperature tends to zero. The origin of these discontinuities
lies in the breakdown of the weak field Jones-Zener expansion which has
previously been used to argue that magneto-transport coefficients are
continuous at simple quantum critical points. The presence of potential
scattering and magnetic breakdown rounds the discontinuities over a window
determined by tau Delta < 1 where Delta is the order parameter and tau is the
quasiparticle elastic lifetime.Comment: 4 pages, 3 figures RevTeX forma
Surface effects on nanowire transport: numerical investigation using the Boltzmann equation
A direct numerical solution of the steady-state Boltzmann equation in a
cylindrical geometry is reported. Finite-size effects are investigated in large
semiconducting nanowires using the relaxation-time approximation. A nanowire is
modelled as a combination of an interior with local transport parameters
identical to those in the bulk, and a finite surface region across whose width
the carrier density decays radially to zero. The roughness of the surface is
incorporated by using lower relaxation-times there than in the interior.
An argument supported by our numerical results challenges a commonly used
zero-width parametrization of the surface layer. In the non-degenerate limit,
appropriate for moderately doped semiconductors, a finite surface width model
does produce a positive longitudinal magneto-conductance, in agreement with
existing theory. However, the effect is seen to be quite small (a few per cent)
for realistic values of the wire parameters even at the highest practical
magnetic fields. Physical insights emerging from the results are discussed.Comment: 15 pages, 7 figure
A decreased probability of habitable planet formation around low-mass stars
Smaller terrestrial planets (< 0.3 Earth masses) are less likely to retain
the substantial atmospheres and ongoing tectonic activity probably required to
support life. A key element in determining if sufficiently massive "sustainably
habitable" planets can form is the availability of solid planet-forming
material. We use dynamical simulations of terrestrial planet formation from
planetary embryos and simple scaling arguments to explore the implications of
correlations between terrestrial planet mass, disk mass, and the mass of the
parent star. We assume that the protoplanetary disk mass scales with stellar
mass as Mdisk ~ f Mstar^h, where f measures the relative disk mass, and 1/2 < h
< 2, so that disk mass decreases with decreasing stellar mass. We consider
systems without Jovian planets, based on current models and observations for M
stars. We assume the mass of a planet formed in some annulus of a disk with
given parameters is proportional to the disk mass in that annulus, and show
with a suite of simulations of late-stage accretion that the adopted
prescription is surprisingly accurate. Our results suggest that the fraction of
systems with sufficient disk mass to form > 0.3 Earth mass habitable planets
decreases for low-mass stars for every realistic combination of parameters.
This "habitable fraction" is small for stellar masses below a mass in the
interval 0.5 to 0.8 Solar masses, depending on disk parameters, an interval
that excludes most M stars. Radial mixing and therefore water delivery are
inefficient in lower-mass disks commonly found around low-mass stars, such that
terrestrial planets in the habitable zones of most low-mass stars are likely to
be small and dry.Comment: Accepted to ApJ. 11 pages, 6 figure
Ambiguity and the economic rhetoric of climate change
This paper examines climate-change benefit-cost analysis in the presence of scientific uncertainty in the form of ambiguity. The specific issue addressed is the robustness of benefit-cost analyses of climate-change policy alternatives to relaxation of Savage's original axioms. Two alternatives to subjective expected utility (SEU) are considered: maximin expected utility (MEU) and incomplete expected utility (IEU). Among other results, it is demonstrated that polar opposite recommendations can emerge in an ambiguous decision setting even if all agree on Society's rate of time preference, Society's risk attitudes, the degree of ambiguity faced, and the scientific primitives. We show that, for a simple numerical simulation of our model, an MEU decision maker favors policies which immediately tackle climate change while an IEU decision prefers "business as usual"
Silver nanoparticles induce pro-inflammatory gene expression and inflammasome activation in human monocytes
A complete cytotoxic profile of exposure to silver (AgNP) nanoparticles investigating their biological effects on the innate immune response of circulating white blood cells is required to form a complete understanding of the risk posed. This was explored by measuring AgNP-stimulated gene expression of the pro-inflammatory cytokines interleukin-1 (IL-1), interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α) in THP-1 monocytes. A further study, on human monocytes extracted from a cohort of blood samples, was carried out to compare with the AgNP immune response in THP-1 cells along with the detection of pro-IL-1β which is a key mediator of the inflammasome complex.
The aims of the study were to clearly demonstrate that AgNP can significantly up-regulate pro-inflammatory cytokine gene expression of IL-1, IL-6 and TNF-α in both THP-1 cells and primary blood monocytes thus indicating a rapid response to AgNP in circulation. Furthermore, a role for the inflammasome in AgNP response was indicated by pro-IL-1β cleavage and release. These results highlight the potential inflammatory effects of AgNP exposure and the responses evoked should be considered with respect to the potential harm that exposure may cause
Determining the phonon density of states from specific heat measurements via maximum entropy methods
The maximum entropy and reverse Monte Carlo methods are applied to the computation of the phonon density of states (DOS) from heat capacity data. The approach is introduced and the formalism is described. Simulated data are used to test the method, and its sensitivity to noise. Heat capacity measurements from diamond are used to demonstrate the use of the method with experimental data. Comparison between maximum entropy and reverse Monte Carlo results shows that the form of the entropy used here is correct, and that results are stable and reliable. Major features of the DOS are picked out, and acoustic and optical phonons can be treated with the same approach. The treatment set out in this paper provides a cost-effective and reliable method for studies of the phonon properties of materials
Dissemination and implementation science training needs: Insights from practitioners and researchers
INTRODUCTION: Dissemination and implementation research training has great potential to improve the impact and reach of health-related research; however, research training needs from the end user perspective are unknown. This paper identifies and prioritizes dissemination and implementation research training needs. METHODS: A diverse sample of researchers, practitioners, and policymakers was invited to participate in Concept Mapping in 2014–2015. Phase 1 (Brainstorming) gathered participants' responses to the prompt: To improve the impact of research evidence in practice and policy settings, a skill in which researchers need more training is… The resulting statement list was edited and included subsequent phases. Phase 2 (Sorting) asked participants to sort each statement into conceptual piles. In Phase 3 (Rating), participants rated the difficulty and importance of incorporating each statement into a training curriculum. A multidisciplinary team synthesized and interpreted the results in 2015–2016. RESULTS: During Brainstorming, 60 researchers and 60 practitioners/policymakers contributed 274 unique statements. Twenty-nine researchers and 16 practitioners completed sorting and rating. Nine concept clusters were identified: Communicating Research Findings, Improve Practice Partnerships, Make Research More Relevant, Strengthen Communication Skills, Develop Research Methods and Measures, Consider and Enhance Fit, Build Capacity for Research, and Understand Multilevel Context. Though researchers and practitioners had high agreement about importance (r =0.93) and difficulty (r =0.80), ratings differed for several clusters (e.g., Build Capacity for Research). CONCLUSIONS: Including researcher and practitioner perspectives in competency development for dissemination and implementation research identifies skills and capacities needed to conduct and communicate contextualized, meaningful, and relevant research
- …