13 research outputs found

    Structural and Mechanical Mechanisms of Ocular Tissues Probed by AFM

    No full text
    In recent years, the atomic force microscope (AFM) has become an important tool in ophthalmic research. It has gained popularity largely because AFM is not restricted by the diffraction limits of light microscopy and can be applied to resolve images with molecular resolution. AFM is a minimally invasive technique and can be used to visualize molecular structures under near-physiological conditions. In addition, the AFM can be employed as a force apparatus to characterize the viscoelastic properties of biomaterials on the micron level and at the level of individual proteins. In this article, we summarize recent AFM studies of ocular tissues, while highlighting the great potential of AFM technology in ophthalmic research. Previous research demonstrates the versatility of the AFM as high resolution imaging technique and as a sensitive force apparatus for probing the mechanical properties of ocular tissues. The structural and mechanical properties of ocular tissues are of major importance to the understanding of the optomechanical functions of the human eye. In addition, AFM has played an important role in the development and characterization of ocular biomaterials, such as contact lenses and intraocular lenses. Studying ocular tissues using Atomic Force Microscopy has enabled several advances in ophthalmic research

    Induction of somatic embryogenesis in woody plants

    No full text

    Black Locust as a Bioenergy Feedstock: a Review

    No full text

    Water analysis

    No full text
    corecore