2 research outputs found

    Extraction and Physico–Chemical Characterization of Chitosan from Mantis Shrimp (<i>Oratosquilla nepa</i>) Shell and the Development of Bio-Composite Film with Agarose

    No full text
    Mantis shrimp (Oratosquilla nepa) exoskeleton, a leftover generated after processing, was used as a starting material for chitosan (CS) production. CS was extracted with different deacetylation times (2, 3 and 4 h), termed CS−2, CS−3 and CS−4, respectively, and their characteristics and antimicrobial and film properties with agarose (AG) were investigated. Prolonged deacetylation time increased the degree of deacetylation (DDA: 73.56 ± 0.09–75.56 ± 0.09%), while extraction yield (15.79 ± 0.19–14.13 ± 0.09%), intrinsic viscosity (η: 3.58 ± 0.09–2.97 ± 0.16 dL/g) and average molecular weight (Mν: 1.4 ± 0.05–1.12 ± 0.08 (×106 Da)) decreased (p ν and antimicrobial activity. Therefore, it was chosen for the development of composite films with AG at different ratios (CS−3/AG; 100/0, 75/25, 50/50, 25/75 and 0/100). As the proportion of AG increased, the tensile strength (29.96 ± 1.80–89.70 ± 5.08 MPa) of the composite films increased, while thickness (0.056 ± 0.012–0.024 ± 0.001 mm), elongation at break (36.52 ± 1.12–25.32 ± 1.23%) and water vapor permeability (3.56 ± 0.10–1.55 ± 0.02 (×10−7 g m m−2 s−1 Pa−1)) decreased (p < 0.05). Moreover, lightness of the films increased and yellowness decreased. CS−3/AG (50/50) composite film exhibited high mechanical and barrier properties and excellent compatibility according to FTIR and SEM analyses. According to these finding, mantis shrimp exoskeleton could be used to produce CS. The developed bio-composite film based on an appropriate ratio (50/50) of CS−3 and AG has potential for being used as food packaging material

    Mechanical and Physicochemical Properties of Composite Biopolymer Films Based on Carboxymethyl Cellulose from Young Palmyra Palm Fruit Husk and Rice Flour

    No full text
    Carboxymethyl cellulose from young Palmyra palm fruit husk (CMCy) film has low water barrier properties, which can limit its application. Thus, the combination of CMCy with other polysaccharides, such as rice flour (RF), may solve this problem. The aim of this study is to prepare the CMCy/RF composite films in different proportions (CMCy100, CMCy75/RF25, CMCy50/RF50, CMCy25/RF75, and RF100) and investigate their mechanical and physicochemical properties. The film strength (33.36–12.99 MPa) and flexibility (9.81–3.95%) of the CMCy/RF composite films decreased significantly (p −8 g m m−2 s−1 Pa−1) and film solubility (82.70–21.64%) of the CMCy/RF composite films. Furthermore, an increased lightness with a coincidental decreased yellowness of the CMCy/RF composite films was pronounced when the RF proportion increased (p < 0.05). However, the addition of RF in different proportions did not influence the film thickness and transparency. Based on SEM micrographs, all film samples had a relatively coarser surface. FTIR spectra showed that some interactions between CMCy and RF blended films had occurred. According to these findings, the CMCy50/RF50 composite film was found to be the best formulation because it has good mechanical and physicochemical properties
    corecore