2,902 research outputs found

    Spin-spin Correlation lengths of Bilayer Antiferromagnets

    Full text link
    The spin-spin correlation length and the static structure factor for bilayer antiferromagnets, such as YBa2_2Cu3_3O6_{6}, are calculated using field theoretical and numerical methods. It is shown that these quantities can be directly measured in neutron scattering experiments using energy integrated two-axis scan despite the strong intensity modulation perpendicular to the layers. Our calculations show that the correlation length of the bilayer antiferromagnet diverges considerably more rapidly, as the temperature tends to zero, than the correlation length of the corresponding single layer antiferromagnet typified by La2_2CuO4_4. This rapid divergence may have important consequences with respect to magnetic fluctuations of the doped superconductors.Comment: This paper supersedes cond-mat/9703138 and contains numerical simulation results to compare against analytical results. 6 pages, 2 postscript figures (embedded), uses EuroPhys.sty and EuroMac

    The effects of magnetic field on the d-density wave order in the cuprates

    Full text link
    We consider the effects of a perpendicular magnetic field on the d-density wave order and conclude that if the pseudogap phase in the cuprates is due to this order, then it is highly insensitive to the magnetic field in the underdoped regime, while its sensitivity increases as the gap vanishes in the overdoped regime. This appears to be consistent with the available experiments and can be tested further in neutron scattering experiments. We also investigate the nature of the de Haas- van Alphen effect in the ordered state and discuss the possibility of observing it.Comment: 5 pages, 4 eps figures, RevTex4. Corrected a silly but important typo in the abstrac

    An Experimental Study of Parabolic Wire-reflectors on a Wave-length of About 3 Metres

    Get PDF
    Abstract not Availabl

    Correlation Lengths in Quantum Spin Ladders

    Full text link
    Analytic expressions for the correlation length temperature dependences are given for antiferromagnetic spin-1/2 Heisenberg ladders using a finite-size non-linear sigma-model approach. These calculations rely on identifying three successive crossover regimes as a function of temperature. In each of these regimes, precise and controlled approximations are formulated. The analytical results are found to be in excellent agreement with Monte Carlo simulations for the Heisenberg Hamiltonian.Comment: 5 pages LaTeX using RevTeX, 3 encapsulated postscript figure

    Bound states in d-density-wave phases

    Full text link
    We investigate the quasiparticle spectrum near surfaces in a two-dimensional system with d-density-wave order within a mean-field theory. For Fermi surfaces with perfect nesting for the ordering wave vector of the d-density-wave, a zero energy bound state occurs at [110] surfaces, in close analogy with the known effect in d-wave superconducting states or graphite. When the shape of the Fermi surface is changed by doping, the bound state energy moves away from the Fermi level. Furthermore, away from half-filling we find inhomogeneous phases with domain walls of the d-density-wave order parameter. The domain walls also support low energy bound states. These phenomena might provide an experimental test for hidden d-density-wave order in the high-Tc cuprates.Comment: 6 pages, 5 figure

    Semiclassical Theory of Chaotic Quantum Transport

    Get PDF
    We present a refined semiclassical approach to the Landauer conductance and Kubo conductivity of clean chaotic mesoscopic systems. We demonstrate for systems with uniformly hyperbolic dynamics that including off-diagonal contributions to double sums over classical paths gives a weak-localization correction in quantitative agreement with results from random matrix theory. We further discuss the magnetic field dependence. This semiclassical treatment accounts for current conservation.Comment: 4 pages, 1 figur

    Single hole doped strongly correlated ladder with a static impurity

    Full text link
    We consider a strongly correlated ladder with diagonal hopping and exchange interactions described by tJt-J type hamiltonian. We study the dynamics of a single hole in this model in the presence of a static non-magnetic (or magnetic) impurity. In the case of a non-magnetic (NM) impurity we solve the problem analytically both in the triplet (S=1) and singlet (S=0) sectors. In the triplet sector the hole doesn't form any bound state with the impurity. However, in the singlet sector the hole forms bound states of different symmetries with increasing J/tJ/t values. Binding energies of those impurity-hole bound states are compared with the binding energy of a pair of holes in absence of any impurity. In the case of magnetic impurity the analytical eigenvalue equations are solved for a large (50 X 2) lattice. In this case also, with increasing J/tJ/t values, impurity-hole bound states of different symmetries are obtained. Binding of the hole with the impurity is favoured for the case of a ferromagnetic (FM) impurity than in the case of antiferromagnetic (AFM) impurity. However binding energy is found to be maximum for the NM impurity. Comparison of binding energies and various impurity-hole correlation functions indicates a pair breaking mechanism by NM impurity.Comment: 15 Pages, 6 figure

    Theory of d-density wave viewed from a vertex model and its implications

    Full text link
    The thermal disordering of the dd-density wave, proposed to be the origin of the pseudogap state of high temperature superconductors, is suggested to be the same as that of the statistical mechanical model known as the 6-vertex model. The low temperature phase consists of a staggered order parameter of circulating currents, while the disordered high temperature phase is a power-law phase with no order. A special feature of this transition is the complete lack of an observable specific heat anomaly at the transition. There is also a transition at a even higher temperature at which the magnitude of the order parameter collapses. These results are due to classical thermal fluctuations and are entirely unrelated to a quantum critical point in the ground state. The quantum mechanical ground state can be explored by incorporating processes that causes transitions between the vertices, allowing us to discuss quantum phase transition in the ground state as well as the effect of quantum criticality at a finite temperature as distinct from the power-law fluctuations in the classical regime. A generalization of the model on a triangular lattice that leads to a 20-vertex model may shed light on the Wigner glass picture of the metal-insulator transition in two-dimensional electron gas. The power-law ordered high temperature phase may be generic to a class of constrained systems and its relation to recent advances in the quantum dimer models is noted.Comment: RevTex4, 10 pages, 11 figure

    Dynamical simulation of current fluctuations in a dissipative two-state system

    Full text link
    Current fluctuations in a dissipative two-state system have been studied using a novel quantum dynamics simulation method. After a transformation of the path integrals, the tunneling dynamics is computed by deterministic integration over the real-time paths under the influence of colored noise. The nature of the transition from coherent to incoherent dynamics at low temperatures is re-examined.Comment: 4 pages, 4 figures; to appear in Phys. Rev. Letter

    Anomalous scaling and spin-charge separation in coupled chains

    Full text link
    We use a bosonization approach to show that the three dimensional Coulomb interaction in coupled metallic chains leads to a Luttinger liquid for vanishing inter-chain hopping tt_{\bot}, and to a Fermi liquid for any finite tt_{\bot}. However, for small t0t_{\bot} \neq 0 the Greens-function satisfies a homogeneity relation with a non-trivial exponent γcb\gamma_{cb} in a large intermediate regime. Our results offer a simple explanation for the large values of γcb\gamma_{cb} inferred from recent photoemission data from quasi one-dimensional conductors and might have some relevance for the understanding of the unusual properties of the high-temperature superconductors.Comment: compressed and uuencoded ps-file, including the figures, accepted for publication in Phys. Rev. Lett
    corecore