1,737 research outputs found

    Utilisation of Iron ore Fines in Alternative Iron making processes - An Indian perspective

    Get PDF
    Extraction of metallic iron from iron bearing ores is the basis of iron and steel industry. Extensive mechanized mining and advanced beneficiation techniques to meet the oxide feed requirements of Blast Furnace, Direct Reduction and Smelting Reduction processes are resulting in gene-ration of macro and micro fines/slimes (washed fines) in various mine sites of the country. Though a part of the fines, mainly macro ones, in the agglomerated form, that is either as sinter or pellet have found use in various iron making processes, the problem still persist with utilization of micro fines. It is understood that Bailadila mines of NMDC alone account for an estimated amount of 11 Mt of slimes. Besides, substantial amount of fines is also accumulated in different mine sites. Partial utilization of mined output is not only affecting internal resource conservation but also contributing to pollution and envir-onmental problems. In this paper, an attempt has been made to focus on various processes/technologies available today, utilizing the iron oxide fines and applicability of the same under Indian conditions. Further, based on available information indicative techno-economics have been spelt out

    Spin-gap effect on resistivity in the t-J model

    Full text link
    We calculate the spin-gap effect on dc resistivity in the t-J model of high-TcT_{\rm c} cuprates by using the Ginzburg-Landau theory coupled with a gauge field as its effective field theory to get ρ(T)T{1c(TT)d}\rho(T) \propto T \{1-c\:(T^* -T)^d \}, where TT^* is the spin-gap onset temperature. By taking the compactness of massive gauge field into account, the exponent dd deviates from its mean-field value 1/2 and becomes a nonuniversal TT-dependent quantity, which improves the correspondence with the experiments.Comment: 4 pages, REVTeX format, 2 eps-figure

    The Two-Dimensional S=1 Quantum Heisenberg Antiferromagnet at Finite Temperatures

    Full text link
    The temperature dependence of the correlation length, susceptibilities and the magnetic structure factor of the two-dimensional spin-1 square lattice quantum Heisenberg antiferromagnet are computed by the quantum Monte Carlo loop algorithm (QMC). In the experimentally relevant temperature regime the theoretically predicted asymptotic low temperature behavior is found to be not valid. The QMC results however, agree reasonably well with the experimental measurements of La2NiO4 even without considering anisotropies in the exchange interactions.Comment: 4 Pages, 1 table, 4 figure

    Entanglement Entropy of Random Fractional Quantum Hall Systems

    Full text link
    The entanglement entropy of the ν=1/3\nu = 1/3 and ν=5/2\nu = 5/2 quantum Hall states in the presence of short range random disorder has been calculated by direct diagonalization. A microscopic model of electron-electron interaction is used, electrons are confined to a single Landau level and interact with long range Coulomb interaction. For very weak disorder, the values of the topological entanglement entropy are roughly consistent with expected theoretical results. By considering a broader range of disorder strengths, the fluctuation in the entanglement entropy was studied in an effort to detect quantum phase transitions. In particular, there is a clear signature of a transition as a function of the disorder strength for the ν=5/2\nu = 5/2 state. Prospects for using the density matrix renormalization group to compute the entanglement entropy for larger system sizes are discussed.Comment: 29 pages, 16 figures; fixed figures and figure captions; revised fluctuation calculation

    Theory of d-density wave viewed from a vertex model and its implications

    Full text link
    The thermal disordering of the dd-density wave, proposed to be the origin of the pseudogap state of high temperature superconductors, is suggested to be the same as that of the statistical mechanical model known as the 6-vertex model. The low temperature phase consists of a staggered order parameter of circulating currents, while the disordered high temperature phase is a power-law phase with no order. A special feature of this transition is the complete lack of an observable specific heat anomaly at the transition. There is also a transition at a even higher temperature at which the magnitude of the order parameter collapses. These results are due to classical thermal fluctuations and are entirely unrelated to a quantum critical point in the ground state. The quantum mechanical ground state can be explored by incorporating processes that causes transitions between the vertices, allowing us to discuss quantum phase transition in the ground state as well as the effect of quantum criticality at a finite temperature as distinct from the power-law fluctuations in the classical regime. A generalization of the model on a triangular lattice that leads to a 20-vertex model may shed light on the Wigner glass picture of the metal-insulator transition in two-dimensional electron gas. The power-law ordered high temperature phase may be generic to a class of constrained systems and its relation to recent advances in the quantum dimer models is noted.Comment: RevTex4, 10 pages, 11 figure

    Effect of RF power on the structural, optical and gas sensing properties of RF-​sputtered Al doped ZnO thin films

    Get PDF
    The effect of Radio Frequency (RF) power on the properties of magnetron sputtered Al doped ZnO thin films and the related sensor properties are investigated. A series of 2 wt​% Al doped ZnO; Zn0.98Al0.02O (AZO) thin films prepd. with magnetron sputtering at different RF powers, are examd. The structural results reveal a good adhesive nature of thin films with quartz substrates as well as increasing thickness of the films with increasing RF power. Besides, the increasing RF power is found to improve the crystallinity and grain growth as confirmed by X-​ray diffraction. On the other hand, the optical transmittance is significantly influenced by the RF power, where the transparency values achieved are higher than 82​% for all the AZO thin films and the estd. optical band gap energy is found to decrease with RF power due to an increase in the crystallite size as well as the film thickness. In addn., the defect induced luminescence at low temp. (77 K) and room temp. (300 K) was studied through photoluminescence spectroscopy, it is found that the defect d. of electronic states of the Al3+ ion increases with an increase of RF power due to the increase in the thickness of the film and the crystallite size. The gas sensing behavior of AZO films was studied for NO2 at 350 °C. The AZO film shows a good response towards NO2 gas and also a good relationship between the response and the NO2 concn., which is modeled using an empirical formula. The sensing mechanism of NO2 is discussed

    Critical exponents of the quantum phase transition in a planar antiferromagnet

    Full text link
    We have performed a large scale quantum Monte Carlo study of the quantum phase transition in a planar spin-1/2 Heisenberg antiferromagnet with CaV4O9 structure. We obtain a dynamical exponent z=1.018+/-0.02. The critical exponents beta, nu and eta agree within our errors with the classical 3D O(3) exponents, expected from a mapping to the nonlinear sigma model. This confirms the conjecture of Chubukov, Sachdev and Ye [Phys. Rev. B 49, 11919 (1994)] that the Berry phase terms in the planar Heisenberg antiferromagnet are dangerously irrelevant.Comment: 5 pages including 4 figures; revised version: some minor changes and added reference

    The NMR relaxation rate of O in undoped Sr_2CuO_2Cl_2: Probing two-dimensional magnons at short distances

    Full text link
    We calculate the nuclear relaxation rate of oxygen in the undoped quasi two-dimensional quantum Heisenberg antiferromagnet Sr_2CuO_2Cl_2 above the Neel temperature. The calculation is performed at two-loop order with the help of the Dyson-Maleev formulation of the spin-wave expansion, taking all scattering processes involving two and three magnons into account. At low temperatures T we find 1 / T_1 = c_1 T^3 + c_2 T^4 + O (T^5), and give explicit expressions for the coefficients c_1 (two-magnon scattering) and c_2 (three magnon scattering). We compare our result with a recent experiment by Thurber et al. and show that this experiment directly probes the existence of short-wavelength magnons in a two-dimensional antiferromagnet.Comment: Final version, to appear in Phys. Rev. B (1 August 1997

    Theory of the c-Axis Penetration Depth in the Cuprates

    Full text link
    Recent measurements of the London penetration depth tensor in the cuprates find a weak temperature dependence along the c-direction which is seemingly inconsistent with evidence for d-wave pairing deduced from in-plane measurements. We demonstrate in this paper that these disparate results are not in contradiction, but can be explained within a theory based on incoherent quasiparticle hopping between the CuO2 layers. By relating the calculated temperature dependence of the penetration depth \lambda_c(T) to the c-axis resistivity, we show how the measured ratio \lambda_c^2(0) / \lambda_c^2(T) can provide insight into the behavior of c-axis transport below Tc and the related issue of ``confinement.''Comment: 4 pages, REVTEX with psfig, 3 PostScript figures included in compressed for

    Scaling and universality in the anisotropic Kondo model and the dissipative two-state system

    Full text link
    Scaling and universality in the Ohmic two-state system is investigated by exploiting the equivalence of this model to the anisotropic Kondo model. For the Ohmic two-state system, we find universal scaling functions for the specific heat, Cα(T)C_{\alpha}(T), static susceptibility, χα(T)\chi_{\alpha}(T), and spin relaxation function Sα(ω)S_{\alpha}(\omega) depending on the reduced temperature T/ΔrT/\Delta_{r} (frequency ω/Δr\omega/\Delta_{r}), with Δr\Delta_{r} the renormalized tunneling frequency, and uniquely specified by the dissipation strength α\alpha (0<α<10<\alpha<1). The scaling functions can be used to extract α\alpha and Δr\Delta_{r} in experimental realizations.Comment: 5 pages (LaTeX), 4 EPS figures. Minor changes, typos corrected, journal reference adde
    corecore