59 research outputs found
Recommended from our members
Investigation of CD26, a potential SARS-CoV-2 receptor, as a biomarker of age and pathology.
OBJECTIVE: In some individuals, coronavirus severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection leads to a variety of serious inflammatory symptoms, including blood clotting and acute respiratory distress. Death due to COVID-19 shows a steep rise in relation to age. Comorbidities such as type 2 diabetes mellitus (T2DM), hypertension, and cardiovascular disease also increase susceptibility. It has been reported that T-cell regulatory dipeptidyl peptidase 4 (DPP4; cluster of differentiation 26 (CD26)) binds to the external spike (S) glycoprotein of SARS-CoV-2 as a receptor, for the viral entry into the host cell. CD26 is expressed on many cells, including T and natural killer (NK) cells of the immune system, as a membrane-anchored form. A soluble form (sCD26) is also found in the blood plasma and cerebrospinal fluid (CSF). Approach and results: To investigate a possible relationship between sCD26 levels, age and pathology, serum samples were collected from control, T2DM and age-related dementia (ARD) subjects. A significant reduction in serum sCD26 levels was seen in relation to age. ARD and T2DM were also associated with lower levels of sCD26. The analysis of blood smears revealed different cellular morphologies: in controls, CD26 was expressed around the neutrophil membrane, whereas in T2DM, excessive sCD26 was found around the mononucleated cells (MNCs). ARD subjects had abnormal fragmented platelets and haemolysis due to low levels of sCD26. CONCLUSIONS: These findings may help to explain the heterogeneity of SARS-CoV-2 infection. High serum sCD26 levels could protect from viral infection by competively inhibiting the virus binding to cellular CD26, whereas low sCD26 levels could increase the risk of infection. If so measuring serum sCD26 level may help to identify individuals at high risk for the COVID-19 infection
A systematic review: efficacy of botulinum toxin in walking and quality of life in post-stroke lower limb spasticity.
BACKGROUND: Improved walking is one of the highest priorities in people living with stroke. Post-stroke lower limb spasticity (PSLLS) impedes walking and quality of life (QOL). The understanding of the evidence of improved walking and QOL following botulinum toxin (BoNTA) injection is not clear. We performed a systematic review of the randomized control trials (RCT) to evaluate the effectiveness of BoNTA injection on walking and QOL in PSLLS. METHODS: We searched PubMed, Web of Science, Embase, CINAHL, ProQuest Thesis and Dissertation checks, Google Scholar, WHO International Clinical Trial Registry Platform, ClinicalTrials.gov , Cochrane, and ANZ and EU Clinical Trials Register for RCTs looking at improvement in walking and QOL following injection of BoNTA in PSLLS. The original search was carried out prior to 16 September 2015. We conducted an additional verifying search on CINHAL, EMBASE, and MEDLINE (via PubMed) from 16 September 2015 to 6 June 2017 using the same clauses as the previous search. Methodological quality of the individual studies was critically appraised using Joanna Briggs Institute's instrument. Only placebo-controlled RCTs looking at improvement in walking and QOL were included in the review. RESULTS: Of 2026 records, we found 107 full-text records. Amongst them, we found five RCTs qualifying our criteria. No new trials were found from the verifying search. Two independent reviewers assessed methodological validity prior to inclusion in the review using Joanna Briggs Institute's appraisal instrument. Two studies reported significant improvement in gait velocity (p = 0.020) and < 0.05, respectively. One study showed significant improvement in 2-min-walking distance (p < 0.05). QOL was recorded in one study without any significant improvement. Meta-analysis of reviewed studies could not be performed because of different methods of assessing walking ability, small sample size with large confidence interval and issues such as lack of power calculations in some studies. Findings from our systematic and detailed study identify the need for a well-designed RCT to adequately investigate the issues highlighted. CONCLUSIONS: This review could not conclude there was sufficient evidence to support or refute improvement on walking or QOL following BoNTA injection. Reasons for this are discussed, and methods for future RCTs are developed
Interplay of Ferritin Accumulation and Ferroportin Loss in Ageing Brain: Implication for Protein Aggregation in Down Syndrome Dementia, Alzheimer's, and Parkinson's Diseases.
Iron accumulates in the ageing brain and in brains with neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and Down syndrome (DS) dementia. However, the mechanisms of iron deposition and regional selectivity in the brain are ill-understood. The identification of several proteins that are involved in iron homeostasis, transport, and regulation suggests avenues to explore their function in neurodegenerative diseases. To uncover the molecular mechanisms underlying this association, we investigated the distribution and expression of these key iron proteins in brain tissues of patients with AD, DS, PD, and compared them with age-matched controls. Ferritin is an iron storage protein that is deposited in senile plaques in the AD and DS brain, as well as in neuromelanin-containing neurons in the Lewy bodies in PD brain. The transporter of ferrous iron, Divalent metal protein 1 (DMT1), was observed solely in the capillary endothelium and in astrocytes close to the ventricles with unchanged expression in PD. The principal iron transporter, ferroportin, is strikingly reduced in the AD brain compared to age-matched controls. Extensive blood vessel damage in the basal ganglia and deposition of punctate ferritin heavy chain (FTH) and hepcidin were found in the caudate and putamen within striosomes/matrix in both PD and DS brains. We suggest that downregulation of ferroportin could be a key reason for iron mismanagement through disruption of cellular entry and exit pathways of the endothelium. Membrane damage and subsequent impairment of ferroportin and hepcidin causes oxidative stress that contributes to neurodegeneration seen in DS, AD, and in PD subjects. We further propose that a lack of ferritin contributes to neurodegeneration as a consequence of failure to export toxic metals from the cortex in AD/DS and from the substantia nigra and caudate/putamen in PD brain
Recommended from our members
Hepcidin Increases Cytokines in Alzheimer's Disease and Down's Syndrome Dementia: Implication of Impaired Iron Homeostasis in Neuroinflammation.
The liver-derived hormone hepcidin, a member of the defensin family of antimicrobial peptides, plays an important role in host defense and innate immunity due to its broad antibacterial and antiviral properties. Ferritin, an iron storage protein is often associated with iron deficiency, hypoferritinemia, hypoxia, and immune complications, which are all significant concerns for systemic infection in Alzheimer's disease (AD) and Down's syndrome (DS) dementia. Serum and post-mortem brain samples were collected from AD, DS and age-matched control subjects. Serum samples were analyzed with ELISA for ferritin, hepcidin and IL-6. Additionally, post-mortem brain sections were assessed by immunohistochemistry for iron-related and inflammatory proteins. A significant increase in serum hepcidin levels was found in DS, compared to controls and AD subjects (p < 0.0001). Hepcidin protein was visible in the epithelial cells of choroid plexus, meningeal macrophages and in the astrocytes close to the endothelium of blood vessels. Hepcidin co-localized with IL-6, indicating its anti-inflammatory properties. We found significant correlation between hypoferritinemia and elevated levels of serum hepcidin in AD and DS. Hepcidin can be transported via macrophages and the majority of the vesicular hepcidin enters the brain via a compromised blood brain barrier (BBB). Our findings provide further insight into the molecular implications of the altered iron metabolism in acute inflammation, and can aid towards the development of preventive strategies and novel treatments in the fight against neuroinflammation
Impaired Iron Homeostasis and Haematopoiesis Impacts Inflammation in the Ageing Process in Down Syndrome Dementia.
Down syndrome (DS) subjects are more likely to develop the clinical features of Alzheimer's disease (AD) very early in the disease process due to the additional impact of neuroinflammation and because of activation of innate immunity. Many factors involved in the neuropathology of AD in DS, including epigenetic factors, innate immunity and impaired haematopoiesis, contribute significantly towards the pathophysiology and the enhanced ageing processes seen in DS and as a consequence of the triplication of genes RUNX1, S100β and OLIG2, together with the influence of proteins that collectively protect from cellular defects and inflammation, which include hepcidin, ferritin, IL-6 and TREM2. This study is aimed at determining whether genetic variants and inflammatory proteins are involved in haematopoiesis and cellular processes in DS compared with age-matched control participants, particularly with respect to neuroinflammation and accelerated ageing. Serum protein levels from DS, AD and control participants were measured by enzyme-linked immunosorbent assay (ELISA). Blood smears and post-mortem brain samples from AD and DS subjects were analysed by immunohistochemistry. RUNX1 mRNA expression was analysed by RT-PCR and in situ hybridisation in mouse tissues. Our results suggest that hepcidin, S100β and TREM2 play a critical role in survival and proliferation of glial cells through a common shared pathway. Blood smear analysis showed the presence of RUNX1 in megakaryocytes and platelets, implying participation in myeloid cell development. In contrast, hepcidin was expressed in erythrocytes and in platelets, suggesting a means of possible entry into the brain parenchyma via the choroid plexus (CP). The gene product of RUNX1 and hepcidin both play a critical role in haematopoiesis in DS. We propose that soluble TREM2, S100β and hepcidin can migrate from the periphery via the CP, modulate the blood-brain immune axis in DS and could form an important and hitherto neglected avenue for possible therapeutic interventions to reduce plaque formation
Recommended from our members
Hepcidin Increases Cytokines in Alzheimer's Disease and Down's Syndrome Dementia: Implication of Impaired Iron Homeostasis in Neuroinflammation.
The liver-derived hormone hepcidin, a member of the defensin family of antimicrobial peptides, plays an important role in host defense and innate immunity due to its broad antibacterial and antiviral properties. Ferritin, an iron storage protein is often associated with iron deficiency, hypoferritinemia, hypoxia, and immune complications, which are all significant concerns for systemic infection in Alzheimer's disease (AD) and Down's syndrome (DS) dementia. Serum and post-mortem brain samples were collected from AD, DS and age-matched control subjects. Serum samples were analyzed with ELISA for ferritin, hepcidin and IL-6. Additionally, post-mortem brain sections were assessed by immunohistochemistry for iron-related and inflammatory proteins. A significant increase in serum hepcidin levels was found in DS, compared to controls and AD subjects (p < 0.0001). Hepcidin protein was visible in the epithelial cells of choroid plexus, meningeal macrophages and in the astrocytes close to the endothelium of blood vessels. Hepcidin co-localized with IL-6, indicating its anti-inflammatory properties. We found significant correlation between hypoferritinemia and elevated levels of serum hepcidin in AD and DS. Hepcidin can be transported via macrophages and the majority of the vesicular hepcidin enters the brain via a compromised blood brain barrier (BBB). Our findings provide further insight into the molecular implications of the altered iron metabolism in acute inflammation, and can aid towards the development of preventive strategies and novel treatments in the fight against neuroinflammation
Lesions to the mediodorsal thalamus but not orbitofrontal cortex enhance volatility beliefs linked to paranoia
Beliefs – attitudes toward some state of the environment – guide action selection and should be robust to variability but sensitive to meaningful change. Beliefs about volatility (expectation of change) are associated with paranoia in humans yet the brain regions responsible for volatility beliefs remain unknown. Orbitofrontal cortex (OFC) is central to adaptive behavior whereas magnocellular mediodorsal thalamus (MDmc) is essential for arbitrating between perceptions and action policies. We assessed belief updating in a three-choice probabilistic reversal-learning task following excitotoxic lesions of MDmc (n=3) or OFC (n=3) and compared performance with that of unoperated monkeys (n=14). Computational analyses indicated a double dissociation: MDmc, but not OFC, lesions were associated with erratic switching behavior and heightened volatility belief (as in paranoia in humans), whereas, OFC, but not MDmc, lesions were associated with increased lose-stay behavior and reward learning rates. Given the consilience across species and models these results have implications for understanding paranoia
Lesions to the mediodorsal thalamus, but not orbitofrontal cortex, enhance volatility beliefs linked to paranoia
Beliefs—attitudes toward some state of the environment—guide action selection and should be robust to variability but sensitive to meaningful change. Beliefs about volatility (expectation of change) are associated with paranoia in humans, but the brain regions responsible for volatility beliefs remain unknown. The orbitofrontal cortex (OFC) is central to adaptive behavior, whereas the magnocellular mediodorsal thalamus (MDmc) is essential for arbitrating between perceptions and action policies. We assessed belief updating in a three-choice probabilistic reversal learning task following excitotoxic lesions of the MDmc (n = 3) or OFC (n = 3) and compared performance with that of unoperated monkeys (n = 14). Computational analyses indicated a double dissociation: MDmc, but not OFC, lesions were associated with erratic switching behavior and heightened volatility belief (as in paranoia in humans), whereas OFC, but not MDmc, lesions were associated with increased lose-stay behavior and reward learning rates. Given the consilience across species and models, these results have implications for understanding paranoia
VALIDITY AND RELIABILITY STUDY OF THE RUNNING-BASED ANAEROBIC SPRINT TEST FOR EVALUATING ANAEROBIC POWER PERFORMANCE AS COMPARED TO WINGATE TEST IN INDIAN MALE TRACK AND FIELD SPRINTERS
Aim: To investigate the criterion validity and relative and absolute reliability of the running-based anaerobic sprint test (RAST) in Indian male track and field sprinters. Material and Methods: Thirty five (n = 35) Indian male sprinters participating in 100m, 200 m and 400 m sprint racing randomly performed RAST and Wingate test as the criterion measure of anaerobic power with one trial each on two separate days. Data were analyzed using the Student’s paired t-test, Pearson’s linear correlation test, intra-class correlation coefficients and Bland and Altman’s plots. Results: Criterion validity was strong and positively significant for average power (r = 0.644, p < 0.000); however, the RAST significantly overestimated maximum and minimum anaerobic power compared to Wingate as revealed by paired t-test. The RAST showed good relative reliability for average power, ICC = 0.628 (0.373 - 0.795: 95% CI) and the higher internal consistency was found only for average anaerobic power value (α = 0.772). In the Bland-Altman analyses, linear regression analyses revealed that both means of differences and limits of agreement were found to be low in cases of average and minimum values of anaerobic power and fatigue index and the results were also not found to be statistically significant, resulting in good reliability. Conclusion: The RAST is a practicable field test to estimate levels of average anaerobic power of track and field sprinters. Coaches and trainers can use RAST for anaerobic power assessment that does not require the use of sophisticated and expensive equipment. Article visualizations
A proposed architecture for the neural representation of spatial context
The role of context in guiding animal behavior has attracted increasing attention in recent years, but little is known about what constitutes a context, nor how and where in the brain it is represented. Contextual stimuli can take many forms, but of particular importance are those that collectively define a particular place or situation. The representation of place has been linked to the hippocampus, because its principal neurons (‘place cells’) are spatially responsive; behavioral experiments also implicate this structure in the processing of contextual stimuli. Together, these findings suggest a hippocampal role in representing ‘spatial context’. The present article outlines a proposed architecture for the encoding of spatial context in which spatial inputs to place cells are modulated (or ‘gated’) by non-spatial stimuli. We discuss recent experimental evidence that spatial context is population-coded, a property which could allow both discrimination between overlapping contexts and generalization across them, and thus provide a foundation for animals' capacity for flexible context-linked place learning
- …