126 research outputs found

    Proteomics approach to identify dehydration responsive nuclear proteins from chickpea (Cicer arietinum L.)

    Get PDF
    Dehydration or water-deficit is one of the most important environmental stress factors that greatly influences plant growth and development and limits crop productivity. Plants respond and adapt to such stress by altering their cellular metabolism and activating various defense machineries. Mechanisms that operate signal perception, transduction, and downstream regulatory events provide valuable information about the underlying pathways involved in environmental stress responses. The nuclear proteins constitute a highly organized, complex network that plays diverse roles during cellular development and other physiological processes. To gain a better understanding of dehydration response in plants, we have developed a comparative nuclear proteome in a food legume, chickpea (Cicer arietinum L.). Three-week-old chickpea seedlings were subjected to progressive dehydration by withdrawing water and the changes in the nuclear proteome were examined using two-dimensional gel electrophoresis. Approximately 205 protein spots were found to be differentially regulated under dehydration. Mass spectrometry analysis allowed the identification of 147 differentially expressed proteins, presumably involved in a variety of functions including gene transcription and replication, molecular chaperones, cell signaling, and chromatin remodeling. The dehydration responsive nuclear proteome of chickpea revealed a coordinated response, which involves both the regulatory as well as the functional proteins. This study, for the first time, provides an insight into the complex metabolic network operating in the nucleus during dehydration

    Comparative analyses of nuclear proteome: extending its function

    Get PDF
    Organeller proteomics is an emerging technology that is critical in determining the cellular signal transduction pathways. Nucleus, the regulatory hub of the eukaryotic cell is a dynamic system and a repository of various macromolecules that serve as modulators of such signaling that dictate cell fate decisions. Nuclear proteins (NPs) are predicted to comprise about 10–20% of the total cellular proteins, suggesting the involvement of the nucleus in a number of diverse functions. Indeed, NPs constitute a highly organized but complex network that plays diverse roles during development and physiological processes. In plants, relatively little is known about the nature of the molecular components and mechanisms involved in coordinating NP synthesis, their action and function. Proteomic study hold promise to understand the molecular basis of nuclear function using an unbiased comparative and differential approach. We identified a few hundred proteins that include classical and non-canonical nuclear components presumably associated with variety of cellular functions impinging on the complexity of nuclear proteome. Here, we review the nuclear proteome based on our own findings, available literature, and databases focusing on detailed comparative analysis of NPs and their functions in order to understand how plant nucleus works. The review also shed light on the current status of plant nuclear proteome and discusses the future prospect

    Plant pre-mRNA splicing in fission yeast, Schizosaccharomyces pombe

    Get PDF
    Pre-mRNA splicing or the removal of introns from precursor messenger RNAs depends on the accurate recognition of intron sequences by the splicing machinery. We have analyzed various aspects of intron sequence and structure in relation to splice site selection and splicing efficiency of a plant gene AmA1 in Schizosaccharomyces pombe. Earlier, we reported the cloning of AmA1, a seed albumin gene from Amaranthus hypochondriacus [A. Raina, A. Datta, Proc. Natl. Acad. Sci. USA 89 (1992) 11774]. In the absence of an in vitro splicing system for plants, the expression of AmA1 genomic clone in S. pombe has been used to analyze splicing of intron constructs. We aim to focus on S. pombe as a possible alternative and examined its effectiveness as a host for plant gene splicing. The results show here that pre-mRNA transcripts of AmA1 gene underwent splicing in S. pombe

    Expression of a fungal sterol desaturase improves tomato drought tolerance, pathogen resistance and nutritional quality

    Get PDF
    Crop genetic engineering mostly aims at improving environmental stress (biotic and abiotic) tolerance as well as nutritional quality. Empowering a single crop with multiple traits is highly demanding and requires manipulation of more than one gene. However, we report improved drought tolerance and fungal resistance along with the increased iron and polyunsaturated fatty acid content in tomato by expressing a single gene encoding C-5 sterol desaturase (FvC5SD) from an edible fungus Flammulina velutipes. FvC5SD is an iron binding protein involved in ergosterol biosynthesis. Morphological and biochemical analyses indicated ≈23% more epicuticular wax deposition in leaves of transgenic plants that provides an effective waterproof barrier resulting in improved protection from drought and infection by phytopathogenic fungus Sclerotinia sclerotiorum. Furthermore, the transgenic fruits have improved nutritional value attributed to enhanced level of beneficial PUFA and 2-3 fold increase in total iron content. This strategy can be extended to other economically important crops

    Genotype independent regeneration and agrobacterium-mediated genetic transformation of sweet potato (Ipomoea batatas L.)

    Get PDF
    Development of an efficient genotype independent regeneration and genetic transformation system in sweet potato continues to be of great interest. Agrobacterium‐mediated genetic transformation protocol was established in two different cultivars of sweet potato using Agrobacterium strain EHA105 harbouring binary plasmid pBI121 containing GUS and nptII genes. The internodal stem segments from 30‐day‐old micropropogated plants were used as explant with different combinations of media and hormones. MS and LS media with various concentrations of growth regulators proved to be non‐responsive and the infecundity was severe with the addition of cytokinins. Nonetheless, MS with 2,4‐D and TDZ gave a good percentage of callusing but with low differentiation. In different concentrations of NAA, significant amount of callusing was observed but percentage of rooting remained low in both the genotypes. Gamborg’s B5 supplemented with NAA proved to be the most suitable media and hormone combination, which yielded shoot formation after 8 ‐ 10 weeks with a regenera‐ tion efficiency of 40 ‐ 70%. Stable integration of transgene was confirmed by PCR analysis. Furthermore, qRT‐PCR analysis was performed to assess the transcript accumulation in addition to the GUS enzymatic assay in the transgenic lines

    Membrane-associated proteomics of chickpea identifies Sad1/UNC-84 protein (CaSUN1), a novel component of dehydration signaling

    Get PDF
    Dehydration affects almost all the physiological processes including those that result in the accumulation of misfolded proteins in the endoplasmic reticulum (ER), which in turn elicits a highly conserved signaling, the unfolded protein response (UPR). We investigated the dehydration-responsive membrane-associated proteome of a legume, chickpea, by 2-DE coupled with mass spectrometry. A total of 184 protein spots were significantly altered over a dehydration treatment of 120 h. Among the differentially expressed proteins, a non-canonical SUN domain protein, designated CaSUN1 (Cicer arietinum Sad1/UNC-84), was identified. CaSUN1 localized to the nuclear membrane and ER, besides small vacuolar vesicles. The transcripts were downregulated by both abiotic and biotic stresses, but not by abscisic acid treatment. Overexpression of CaSUN1 conferred stress tolerance in transgenic Arabidopsis. Furthermore, functional complementation of the yeast mutant, slp1, could rescue its growth defects. We propose that the function of CaSUN1 in stress response might be regulated via UPR signaling

    Comparative proteomics analysis of differentially expressed proteins in chickpea extracellular matrix during dehydration stress

    Get PDF
    Water deficit or dehydration is the most crucial environmental factor that limits crop productivity and influences geographical distribution of many crop plants. It is suggested that dehydration-responsive changes in expression of proteins may lead to cellular adaptation against water deficit conditions. Most of the earlier understanding of dehydration-responsive cellular adaptation has evolved from transcriptome analyses. By contrast, comparative analysis of dehydration-responsive proteins, particularly proteins in the subcellular fraction, is limiting. In plants, cell wall or extracellular matrix (ECM) serves as the repository for most of the components of the cell signaling process and acts as a frontline defense. Thus, we have initiated a proteomics approach to identify dehydration-responsive ECM proteins in a food legume, chickpea. Several commercial chickpea varieties were screened for the status of dehydration tolerance using different physiological and biochemical indexes. Dehydration-responsive temporal changes of ECM proteins in JG-62, a relatively tolerant variety, revealed 186 proteins with variance at a 95% significance level statistically. The comparative proteomics analysis led to the identification of 134 differentially expressed proteins that include predicted and novel dehydration-responsive proteins. This study, for the first time, demonstrates that over a hundred ECM proteins, presumably involved in a variety of cellular functions, viz. cell wall modification, signal transduction, metabolism, and cell defense and rescue, impinge on the molecular mechanism of dehydration tolerance in plants

    Reduction of oxalate levels in tomato fruit and consequent metabolic remodeling following overexpression of a fungal oxalate decarboxylase

    Get PDF
    The plant metabolite oxalic acid is increasingly recognized as a food toxin with negative effects on human nutrition. Decarboxylative degradation of oxalic acid is catalyzed, in a substrate-specific reaction, by oxalate decarboxylase (OXDC), forming formic acid and carbon dioxide. Attempts to date to reduce oxalic acid levels and to understand the biological significance of OXDC in crop plants have met with little success. To investigate the role of OXDC and the metabolic consequences of oxalate down-regulation in a heterotrophic, oxalic acid-accumulating fruit, we generated transgenic tomato (Solanum lycopersicum) plants expressing an OXDC (FvOXDC) from the fungus Flammulina velutipes specifically in the fruit. These E8.2-OXDC fruit showed up to a 90% reduction in oxalate content, which correlated with concomitant increases in calcium, iron, and citrate. Expression of OXDC affected neither carbon dioxide assimilation rates nor resulted in any detectable morphological differences in the transgenic plants. Comparative proteomic analysis suggested that metabolic remodeling was associated with the decrease in oxalate content in transgenic fruit. Examination of the E8.2-OXDC fruit proteome revealed that OXDC-responsive proteins involved in metabolism and stress responses represented the most substantially up- and down-regulated categories, respectively, in the transgenic fruit, compared with those of wild-type plants. Collectively, our study provides insights into OXDC-regulated metabolic networks and may provide a widely applicable strategy for enhancing crop nutritional value

    Proteomic analysis reveals the diversity and complexity of membrane proteins in chickpea (Cicer arietinum L.)

    Get PDF
    Background Compartmentalization is a unique feature of eukaryotes that helps in maintaining cellular homeostasis not only in intra- and inter-organellar context, but also between the cells and the external environment. Plant cells are highly compartmentalized with a complex metabolic network governing various cellular events. The membranes are the most important constituents in such compartmentalization, and membrane-associated proteins play diverse roles in many cellular processes besides being part of integral component of many signaling cascades. Results To obtain valuable insight into the dynamic repertoire of membrane proteins, we have developed a proteome reference map of a grain legume, chickpea, using two-dimensional gel electrophoresis. MALDI-TOF/TOF and LC-ESI-MS/MS analysis led to the identification of 91 proteins involved in a variety of cellular functions viz., bioenergy, stress-responsive and signal transduction, metabolism, protein synthesis and degradation, among others. Significantly, 70% of the identified proteins are putative integral membrane proteins, possessing transmembrane domains. Conclusions The proteomic analysis revealed many resident integral membrane proteins as well as membrane-associated proteins including those not reported earlier. To our knowledge, this is the first report of membrane proteome from aerial tissues of a crop plant. The findings may provide a better understanding of the biochemical machinery of the plant membranes at the molecular level that might help in functional genomics studies of different developmental pathways and stress-responses
    corecore