6,251 research outputs found

    Nucleosynthesis in Advective Accretion Disks Around Galactic and Extra-Galactic Black Holes

    Get PDF
    We compute the nucleosynthesis of materials inside advective disks around black holes. We show that composition of incoming matter can change significantly depending on the accretion rate and accretion disks. These works are improvements on the earlier works in thick accretion disks of Chakrabarti, Jin & Arnett (1987) in presence of advection in the flow.Comment: Latex pages including figures. Kluwer Style files included. Appearing in `Observational Evidence for Black Holes in the Universe', ed. Sandip K. Chakrabarti, Kluwer Academic Publishers (DORDRECHT: Holland

    Quantum Spheres for OSp_q(1/2)

    Full text link
    Using the corepresentation of the quantum supergroup OSp_q(1/2) a general method for constructing noncommutative spaces covariant under its coaction is developed. In particular, a one-parameter family of covariant algebras, which may be interpreted as noncommutative superspheres, is constructed. It is observed that embedding of the supersphere in the OSp_q(1/2) algebra is possible. This realization admits infinitesimal characterization a la Koornwinder. A covariant oscillator realization of the supersphere is also presented.Comment: 30pages, no figure. to be published in J. Math. Phy

    Helicase processivity and not the unwinding velocity exhibits universal increase with force

    Get PDF
    Helicases, involved in a number of cellular functions, are motors that translocate along singlestranded nucleic acid and couple the motion to unwinding double-strands of a duplex nucleic acid. The junction between double and single strands creates a barrier to the movement of the helicase, which can be manipulated in vitro by applying mechanical forces directly on the nucleic acid strands. Single molecule experiments have demonstrated that the unwinding velocities of some helicases increase dramatically with increase in the external force, while others show little response. In contrast, the unwinding processivity always increases when the force increases. The differing responses of the unwinding velocity and processivity to force has lacked explanation. By generalizing a previous model of processive unwinding by helicases, we provide a unified framework for understanding the dependence of velocity and processivity on force and the nucleic acid sequence. We predict that the sensitivity of unwinding processivity to external force is a universal feature that should be observed in all helicases. Our prediction is illustrated using T7 and NS3 helicases as case studies. Interestingly, the increase in unwinding processivity with force depends on whether the helicase forces base pair opening by direct interaction or if such a disruption occurs spontaneously due to thermal uctuations. Based on the theoretical results, we propose that proteins like single-strand binding proteins associated with helicases in the replisome, may have co-evolved with helicases to increase the unwinding processivity even if the velocity remains unaffected

    A scaling theory of quantum breakdown in solids

    Full text link
    We propose a new scaling theory for general quantum breakdown phenomena. We show, taking Landau-Zener type breakdown as a particular example, that the breakdown phenomena can be viewed as a quantum phase transition for which the scaling theory is developed. The application of this new scaling theory to Zener type breakdown in Anderson insulators, and quantum quenching has been discussed.Comment: 3 page

    A Conceptual Model of the Incubation of New Technology-Based Ventures: a Social Capital Perspective

    Get PDF
    Technology incubators are newer organizational forms that are created to support and accelerate the development and success of affiliated ventures, particularly new technology-based ventures. Current literature regarding incubators has suggested that an understanding of the incubation process is important when seeking to understand how affiliated ventures develop and grow. However, very little is known about the incubation process, particularly the incubation of technology-based ventures. Prior literature suggests that technology-based ventures develop in terms of both business and technological development and that the incubation process varies along these dimensions. Thus, understanding the incubation of technology–based ventures must consider the differing but simultaneous dynamics of business and technological development. Drawing from the social capital, entrepreneurship, incubation, and organizational learning literature, a conceptual model of the incubation of new technology-based ventures within technology incubators is presented.incubators; new technology-based ventures; entrepreneurship; innovation.

    Proteinopathy, oxidative stress and mitochondrial dysfunction: cross talk in alzheimer’s disease and parkinson’s disease

    Get PDF
    Alzheimer's disease and Parkinson's disease are two common neurodegenerative diseases of the elderly people that have devastating effects in terms of morbidity and mortality. The predominant form of the disease in either case is sporadic with uncertain etiology. The clinical features of Parkinson's disease are primarily motor deficits, while the patients of Alzheimer's disease present with dementia and cognitive impairment. Though neuronal death is a common element in both the disorders, the postmortem histopathology of the brain is very characteristic in each case and different from each other. In terms of molecular pathogenesis, however, both the diseases have a significant commonality, and proteinopathy (abnormal accumulation of misfolded proteins), mitochondrial dysfunction and oxidative stress are the cardinal features in either case. These three damage mechanisms work in concert, reinforcing each other to drive the pathology in the aging brain for both the diseases; very interestingly, the nature of interactions among these three damage mechanisms is very similar in both the diseases, and this review attempts to highlight these aspects. In the case of Alzheimer's disease, the peptide amyloid beta (A beta) is responsible for the proteinopathy, while alpha-synuclein plays a similar role in Parkinson's disease. The expression levels of these two proteins and their aggregation processes are modulated by reactive oxygen radicals and transition metal ions in a similar manner. In turn, these proteins - as oligomers or in aggregated forms - cause mitochondrial impairment by apparently following similar mechanisms. Understanding the common nature of these interactions may, therefore, help us to identify putative neuroprotective strategies that would be beneficial in both the clinical conditions

    Satellite observations of thought experiments close to a black hole

    Get PDF
    Since black holes are `black', methods of their identification must necessarily be indirect. Due to very special boundary condition on the horizon, the advective flow behaves in a particular way, which includes formation of centrifugal pressure dominated boundary layer or CENBOL where much of the infall energy is released and outflows are generated. The observational aspects of black holes must depend on the steady and time-dependent properties of this boundary layer. Several observational results are written down in this review which seem to support the predictions of thought experiments based on this advective accretion/outflow model. In future, when gravitational waves are detected, some other predictions of this model could be tested as well.Comment: Published in Classical and Quantum Gravity, v. 17, No. 12, p. 2427, 200

    Elastic Cheerios effect: self-assembly of cylinders on a soft solid

    Full text link
    A rigid cylinder placed on a soft gel deforms its surface. When multiple cylinders are placed on the surface, they interact with each other via the topography of the deformed gel which serves as an energy landscape; as they move, the landscape changes which in turn changes their interaction. We use a combination of experiments, simple scaling estimates and numerical simulations to study the self-assembly of cylinders in this elastic analog of the Cheerios effect for capillary interactions on a fluid interface. Our results show that the effective two body interaction can be well described by an exponential attraction potential as a result of which the dynamics also show an exponential behavior with respect to the separation distance. When many cylinders are placed on the gel, the cylinders cluster together if they are not too far apart; otherwise their motion gets elastically arrested

    Generalized boson algebra and its entangled bipartite coherent states

    Full text link
    Starting with a given generalized boson algebra U_(h(1)) known as the bosonized version of the quantum super-Hopf U_q[osp(1/2)] algebra, we employ the Hopf duality arguments to provide the dually conjugate function algebra Fun_(H(1)). Both the Hopf algebras being finitely generated, we produce a closed form expression of the universal T matrix that caps the duality and generalizes the familiar exponential map relating a Lie algebra with its corresponding group. Subsequently, using an inverse Mellin transform approach, the coherent states of single-node systems subject to the U_(h(1)) symmetry are found to be complete with a positive-definite integration measure. Nonclassical coalgebraic structure of the U_(h(1)) algebra is found to generate naturally entangled coherent states in bipartite composite systems.Comment: 15pages, no figur

    RTT relations, a modified braid equation and noncommutative planes

    Full text link
    With the known group relations for the elements (a,b,c,d)(a,b,c,d) of a quantum matrix TT as input a general solution of the RTTRTT relations is sought without imposing the Yang - Baxter constraint for RR or the braid equation for R^=PR\hat{R} = PR. For three biparametric deformatios, GL(p,q)(2),GL(g,h)(2)GL_{(p,q)}(2), GL_{(g,h)}(2) and GL(q,h)(1/1)GL_{(q,h)}(1/1), the standard,the nonstandard and the hybrid one respectively, RR or R^\hat{R} is found to depend, apart from the two parameters defining the deformation in question, on an extra free parameter KK,such that only for two values of KK, given explicitly for each case, one has the braid equation. Arbitray KK corresponds to a class (conserving the group relations independent of KK) of the MQYBE or modified quantum YB equations studied by Gerstenhaber, Giaquinto and Schak. Various properties of the triparametric R^(K;p,q)\hat{R}(K;p,q), R^(K;g,h)\hat{R}(K;g,h) and R^(K;q,h)\hat{R}(K;q,h) are studied. In the larger space of the modified braid equation (MBE) even R^(K;p,q)\hat{R}(K;p,q) can satisfy R^2=1\hat{R}^2 = 1 outside braid equation (BE) subspace. A generalized, KK- dependent, Hecke condition is satisfied by each 3-parameter R^\hat{R}. The role of KK in noncommutative geometries of the (K;p,q)(K;p,q),(K;g,h)(K;g,h) and (K;q,h)(K;q,h) deformed planes is studied. K is found to introduce a "soft symmetry breaking", preserving most interesting properties and leading to new interesting ones. Further aspects to be explored are indicated.Comment: Latex, 17 pages, minor change
    • …
    corecore