4,850 research outputs found

    QPOs from Radial and Vertical Oscillation of Shocks in Advective Accretion Flows

    Full text link
    We present results of several numerical simulations of two dimensional advective flows which include cooling processes. We show that the computed light curve is similar to the χ\chi state in GRS 1915+105. The power density spectrum (PDS) also shows presence of QPOs near the break frequency.Comment: 4 pages, 2 figures To be published in the Proceedings of 10th Marcel Grossman Meeting, Ed. R. Ruffini et al. (World Scientific: Singapore

    Hydrodynamic Simulations of Oscillating Shock Waves in a Sub-Keplerian Accretion Flow Around Black Holes

    Get PDF
    We study the accretion processes on a black hole by numerical simulation. We use a grid based finite difference code for this purpose. We scan the parameter space spanned by the specific energy and the angular momentum and compare the time-dependent solutions with those obtained from theoretical considerations. We found several important results (a) The time dependent flow behaves close to a constant height model flow in the pre-shock region and a flow with vertical equilibrium in the post-shock region. (c) The infall time scale in the post-shock region is several times higher than the free-fall time scale. (b) There are two discontinuities in the flow, one being just outside of the inner sonic point. Turbulence plays a major role in determining the locations of these discontinuities. (d) The two discontinuities oscillate with two different frequencies and behave as a coupled harmonic oscillator. A Fourier analysis of the variation of the outer shock location indicates higher power at the lower frequency and lower power at the higher frequency. The opposite is true when the analysis of the inner shock is made. These behaviours will have implications in the spectral and timing properties of black hole candidates.Comment: 19 pages, 13 figures, 1 Table MNRAS (In press

    Satellite observations of thought experiments close to a black hole

    Get PDF
    Since black holes are `black', methods of their identification must necessarily be indirect. Due to very special boundary condition on the horizon, the advective flow behaves in a particular way, which includes formation of centrifugal pressure dominated boundary layer or CENBOL where much of the infall energy is released and outflows are generated. The observational aspects of black holes must depend on the steady and time-dependent properties of this boundary layer. Several observational results are written down in this review which seem to support the predictions of thought experiments based on this advective accretion/outflow model. In future, when gravitational waves are detected, some other predictions of this model could be tested as well.Comment: Published in Classical and Quantum Gravity, v. 17, No. 12, p. 2427, 200

    Smoothed Particle Hydrodynamic Simulations of Viscous Accretion Discs Around Black Holes

    Full text link
    Viscous Keplerian discs become sub-Keplerian close to a black hole since they pass through sonic points before entering into it. We study the time evolution of polytropic viscous accretion discs (both in one and two dimensional flows) using Smoothed Particle Hydrodynamics. We discover that for a large region of the parameter space, when the flow viscosity parameter is less than a critical value, standing shock waves are formed. If the viscosity is very high then the shock disappears. In the intermediate viscosity the disc oscillates very significantly in viscous time-scale. Our simulations indicate that these centrifugally supported high density region close to a black hole plays an active role in the flow dynamics, and consequently, the radiation dynamics.Comment: MNRAS style 6 pages of output, macros included. MNRAS (submitted

    A scaling theory of quantum breakdown in solids

    Full text link
    We propose a new scaling theory for general quantum breakdown phenomena. We show, taking Landau-Zener type breakdown as a particular example, that the breakdown phenomena can be viewed as a quantum phase transition for which the scaling theory is developed. The application of this new scaling theory to Zener type breakdown in Anderson insulators, and quantum quenching has been discussed.Comment: 3 page

    QPO Evolution in 2005 Outburst of the Galactic Nano Quasar GRO J1655-40

    Full text link
    GRO J1655-40 showed significant X-ray activity in the last week of February, 2005 and remained active for the next 260 days. The rising and the decline phases of this particular outburst show evidence for systematic movements of the Comptonizing region, assumed to be a CENBOL, which causes the Quasi-periodic Oscillations or QPOs. We present both the spectral and the timing results of the RXTE/PCA data taken from these two hard spectral states. Assuming that the QPOs originate from an oscillating shock CENBOL, we show how the shock slowly moves in through the accretion flow during the rising phase at a constant velocity and accelerate away outward during the later part of the decline phase. By fitting the observed frequencies with our solution, we extract time variation of various disk parameters such as the shock locations, velocity etc.Comment: 5 Pages, 2 Figures, Proceeding of the 2nd Kolkata Conference on "Observational Evidence for the Black Holes in the Universe", Published in AIP, 200

    Nucleation theory and the phase diagram of the magnetization-reversal transition

    Full text link
    The phase diagram of the dynamic magnetization-reversal transition in pure Ising systems under a pulsed field competing with the existing order can be explained satisfactorily using the classical nucleation theory. Indications of single-domain and multi-domain nucleation and of the corresponding changes in the nucleation rates are clearly observed. The nature of the second time scale of relaxation, apart from the field driven nucleation time, and the origin of its unusual large values at the phase boundary are explained from the disappearing tendency of kinks on the domain wall surfaces after the withdrawal of the pulse. The possibility of scaling behaviour in the multi-domain regime is identified and compared with the earlier observations.Comment: 10 pages Latex, 4 Postscript figure

    CSPOB-Continuous Spectrophotometry of Black Holes

    Full text link
    The goal of a small and dedicated satellite called the "Continuous Spectro-Photometry of Black Holes" or CSPOB is to provide the essential tool for the theoretical understanding of the hydrodynamic and magneto-hydrodynamic flows around black holes. In its life time of about three to four years, only a half a dozen black holes will be observed continuously with a pair of CSPOBs. Changes in the spectral and temporal variability properties of the high-energy emission would be caught as they happen. Several important questions are expected to be answered and many puzzles would be sorted out with this mission.Comment: 4 Pages, 3 Figures, Proceeding of the 2nd Kolkata Conference on "Observational Evidence for the Black Holes in the Universe", Published in AIP, 200

    Evolution of the quasi-periodic oscillation frequency in GRO J1655-40 -- Implications for accretion disk dynamics

    Full text link
    Low and intermediate frequency quasi-periodic oscillations (QPOs) are thought to be due to oscillations of Comptonizing regions or hot blobs embedded in Keplerian disks. Any movement of these perturbations is expected systematically to change the QPO frequency. Our goal is to find systems where such a systematic drifts have been observed. We also try to find the real cause of such drifts and whether they shed some light on the accretion disk dynamics. Using archival data of the recent outburst of GRO J1655-40, we report the presence of such systematic drifts not only during the rising phase from the 25th of February 2005 to the 12th March 2005, when the QPO frequency monotonically increased from 82mHz to 17.78Hz but also in the decline phase from the 15th September 2005 to the 5th of October 2005, when the QPO frequency decreased from 13.14Hz to 34mHz. We fitted the frequency drifts with the propagatory oscillating shock solution. In the shock-oscillation solution, the frequency is inversely proportional to the infall time scale from the shock location. We obtained the shock location and strength through such a fit. The astonishing smoothness of the variation of the QPO frequency over a period of weeks directly supports the view that it may due to the drift of an oscillating shock rather than the movements of a blob inside a differentially rotating disk.Comment: 8 pages, 3 figures, Astronomy & Astrophysics (accepted

    Statistics of the Kolkata Paise Restaurant Problem

    Full text link
    We study the dynamics of a few stochastic learning strategies for the 'Kolkata Paise Restaurant' problem, where N agents choose among N equally priced but differently ranked restaurants every evening such that each agent tries get to dinner in the best restaurant (each serving only one customer and the rest arriving there going without dinner that evening). We consider the learning strategies to be similar for all the agents and assume that each follow the same probabilistic or stochastic strategy dependent on the information of the past successes in the game. We show that some 'naive' strategies lead to much better utilization of the services than some relatively 'smarter' strategies. We also show that the service utilization fraction as high as 0.80 can result for a stochastic strategy, where each agent sticks to his past choice (independent of success achieved or not; with probability decreasing inversely in the past crowd size). The numerical results for utilization fraction of the services in some limiting cases are analytically examined.Comment: 10 pages, 3 figs; accepted in New J Phy
    corecore