5,717 research outputs found
The Gervais-Neveu-Felder equation for the Jordanian quasi-Hopf U_{h;y}(sl(2)) algebra
Using a contraction procedure, we construct a twist operator that satisfies a
shifted cocycle condition, and leads to the Jordanian quasi-Hopf U_{h;y}(sl(2))
algebra. The corresponding universal matrix obeys a
Gervais-Neveu-Felder equation associated with the U_{h;y}(sl(2)) algebra. For a
class of representations, the dynamical Yang-Baxter equation may be expressed
as a compatibility condition for the algebra of the Lax operators.Comment: Latex, 9 pages, no figure
Generalized boson algebra and its entangled bipartite coherent states
Starting with a given generalized boson algebra U_(h(1)) known as the
bosonized version of the quantum super-Hopf U_q[osp(1/2)] algebra, we employ
the Hopf duality arguments to provide the dually conjugate function algebra
Fun_(H(1)). Both the Hopf algebras being finitely generated, we produce a
closed form expression of the universal T matrix that caps the duality and
generalizes the familiar exponential map relating a Lie algebra with its
corresponding group. Subsequently, using an inverse Mellin transform approach,
the coherent states of single-node systems subject to the U_(h(1)) symmetry
are found to be complete with a positive-definite integration measure.
Nonclassical coalgebraic structure of the U_(h(1)) algebra is found to
generate naturally entangled coherent states in bipartite composite systems.Comment: 15pages, no figur
Effect of realistic interatomic interactions and two-body correlation on the heat capacity of a trapped BEC
An approximate many-body theory has been used to calculate the heat capacity
and the condensate fraction of a BEC with effective repulsive interaction. The
effect of interactions has been analyzed and compared with the non-interacting
case. It has been found that the repulsive interaction lowers the critical
temperature from the value found in the non-interacting case. The difference
between the critical temperatures increases with the increase in the total
number of atoms in the trap.Comment: 15 pages, 5 figure
Particle Acceleration in Advection-Dominated Accretion Disks with Shocks: Green's Function Energy Distribution
The distribution function describing the acceleration of relativistic
particles in an advection-dominated accretion disk is analyzed using a
transport formalism that includes first-order Fermi acceleration, advection,
spatial diffusion, and the escape of particles through the upper and lower
surfaces of the disk. When a centrifugally-supported shock is present in the
disk, the concentrated particle acceleration occurring in the vicinity of the
shock channels a significant fraction of the binding energy of the accreting
gas into a population of relativistic particles. These high-energy particles
diffuse vertically through the disk and escape, carrying away both energy and
entropy and allowing the remaining gas to accrete. The dynamical structure of
the disk/shock system is computed self-consistently using a model previously
developed by the authors that successfully accounts for the production of the
observed relativistic outflows (jets) in M87 and \SgrA. This ensures that the
rate at which energy is carried away from the disk by the escaping relativistic
particles is equal to the drop in the radial energy flux at the shock location,
as required for energy conservation. We investigate the influence of advection,
diffusion, and acceleration on the particle distribution by computing the
nonthermal Green's function, which displays a relatively flat power-law tail at
high energies. We also obtain the energy distribution for the particles
escaping from the disk, and we conclude by discussing the spectrum of the
observable secondary radiation produced by the escaping particles.Comment: Published in Ap
On the role of a new type of correlated disorder in extended electronic states in the Thue-Morse lattice
A new type of correlated disorder is shown to be responsible for the
appearance of extended electronic states in one-dimensional aperiodic systems
like the Thue-Morse lattice. Our analysis leads to an understanding of the
underlying reason for the extended states in this system, for which only
numerical evidence is available in the literature so far. The present work also
sheds light on the restrictive conditions under which the extended states are
supported by this lattice.Comment: 11 pages, LaTeX V2.09, 1 figure (available on request), to appear in
Physical Review Letter
Boltzmann-Shannon Entropy: Generalization and Application
The paper deals with the generalization of both Boltzmann entropy and
distribution in the light of most-probable interpretation of statistical
equilibrium. The statistical analysis of the generalized entropy and
distribution leads to some new interesting results of significant physical
importance.Comment: 5 pages, Accepted in Mod.Phys.Lett.
Mass Outflow Rate From Accretion Discs around Compact Objects
We compute mass outflow rates from accretion disks around compact objects,
such as neutron stars and black holes. These computations are done using
combinations of exact transonic inflow and outflow solutions which may or may
not form standing shock waves. Assuming that the bulk of the outflow is from
the effective boundary layers of these objects, we find that the ratio of the
outflow rate and inflow rate varies anywhere from a few percent to even close
to a hundred percent (i.e., close to disk evacuation case) depending on the
initial parameters of the disk, the degree of compression of matter near the
centrifugal barrier, and the polytropic index of the flow. Our result, in
general, matches with the outflow rates obtained through a fully time-dependent
numerical simulation. In some region of the parameter space when the standing
shock does not form, our results indicate that the disk may be evacuated and
may produce quiescence states.Comment: 30 Latex pages and 13 figures. crckapb.sty; Published in Class.
Quantum Grav. Vol. 16. No. 12. Pg. 387
Phases, many-body entropy measures and coherence of interacting bosons in optical lattices
Already a few bosons with contact interparticle interactions in small optical
lattices feature a variety of quantum phases: superfluid, Mott-insulator and
fermionized Tonks gases can be probed in such systems. To detect these phases
-- pivotal for both experiment and theory -- as well as their many-body
properties we analyze several distinct measures for the one-body and many-body
Shannon information entropies. We exemplify the connection of these entropies
with spatial correlations in the many-body state by contrasting them to the
Glauber normalized correlation functions. To obtain the ground-state for
lattices with commensurate filling (i.e. an integer number of particles per
site) for the full range of repulsive interparticle interactions we utilize the
multiconfigurational time-dependent Hartree method for bosons (MCTDHB) in order
to solve the many-boson Schr\"odinger equation. We demonstrate that all
emergent phases -- the superfluid, the Mott insulator, and the fermionized gas
can be characterized equivalently by our many-body entropy measures and by
Glauber's normalized correlation functions. In contrast to our many-body
entropy measures, single-particle entropy cannot capture these transitions.Comment: 11 pages, 7 figures, software available at http://ultracold.or
Particle Acceleration and the Production of Relativistic Outflows in Advection-Dominated Accretion Disks with Shocks
Relativistic outflows (jets) of matter are commonly observed from systems
containing black holes. The strongest outflows occur in the radio-loud systems,
in which the accretion disk is likely to have an advection-dominated structure.
In these systems, it is clear that the binding energy of the accreting gas is
emitted primarily in the form of particles rather than radiation. However, no
comprehensive model for the disk structure and the associated outflows has yet
been produced. In particular, none of the existing models establishes a direct
physical connection between the presence of the outflows and the action of a
microphysical acceleration mechanism operating in the disk. In this paper we
explore the possibility that the relativistic protons powering the jet are
accelerated at a standing, centrifugally-supported shock in the underlying
accretion disk via the first-order Fermi mechanism. The theoretical analysis
employed here parallels the early studies of cosmic-ray acceleration in
supernova shock waves, and the particle acceleration and disk structure are
treated in a coupled, self-consistent manner based on a rigorous mathematical
approach. We find that first-order Fermi acceleration at standing shocks in
advection-dominated disks proves to be a very efficient means for accelerating
the jet particles. Using physical parameters appropriate for M87 and SgrA*, we
verify that the jet kinetic luminosities computed using our model agree with
estimates based on observations of the sources.Comment: accepted for publication in the Astrophysical Journa
- …