63 research outputs found

    Methods and compositions for inhibiting the proliferation of cancer cells (CON)

    Get PDF
    We have identified LIM kinase 1 as potetial target for functional inactivation using antisense RNA for prevention and or treatment of prostate cancer metastasi

    Methods and compositions for inhibiting the proliferation of cancer cells (DIV)

    Get PDF
    A method of decreasing the expression of LIM kinase 1 in a cancer cell comprising; providing an oligonucleotide consisting of the sequence of SEQ ID NO: 1; providing a cancer cell comprising an mRNA encoding LIM kinase 1; and introducing the oligonucleotide into the cancer cell, wherein the oligonucleotide decreases the expression of LIM kinase 1 in the cancer cell. The method also provides compositions of an antisense RNA LIM kinase 1 that can be administered to an individual for the purpose of inhibiting a protein kinase pathway and which further comprises methods for treating and monitoring the proliferation and metastasis of cancer cells. A kit may be used in the detection and treatment of cancer

    Co-targeting of aurora a kinase and lim kinase 1 for cancer therapy

    Get PDF
    Despite recent advances in development of improved cancer therapeutics one of the many clinical challenges is that patients often show resistance to cancer drugs. This invention provides evidence that an alternate method of treatment of cancer could be adopted for improved efficacy of existing therapies and /or treatment of drug resistant cancers. This study describes a novel functional relationship between two proteins that regulate proliferation of cells. Because these proteins are involved in cell growth, the amounts of these proteins are tightly regulated in normal cells however in cancer cells, abnormally increased amounts of these proteins are noted. One of the common methods for controlling abnormal growth of cancer cells is to inhibit production of these proteins. However, there are incidences of frequent development of resistance to the chemotherapeutic agents upon prolonged treatment, which sometimes is necessary to destroy all the cancer cells in the body. This study indicates that inhibitors of both proteins could be used instead of one, which will allow the use of lesser amounts of individual inhibitor to obtain the same effect

    LIM kinase1 modulates function of membrane type matrix metalloproteinase 1: implication in invasion of prostate cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>LIM kinase 1 (LIMK1) is an actin and microtubule cytoskeleton modulatory protein that is overexpressed in a number of cancerous tissues and cells and also promotes invasion and metastasis of prostate and breast cancer cells. Membrane type matrix metalloproteinase 1 (MT1-MMP) is a critical modulator of extracellular matrix (ECM) turnover through pericellular proteolysis and thus plays crucial roles in neoplastic cell invasion and metastasis. MT1-MMP and its substrates pro-MMP-2 and pro-MMP-9 are often overexpressed in a variety of cancers including prostate cancer and the expression levels correlate with the grade of malignancy in prostate cancer cells. The purpose of this study is to determine any functional relation between LIMK1 and MT1-MMP and its implication in cell invasion.</p> <p>Results</p> <p>Our results showed that treatment with the hydroxamate inhibitor of MT1-MMP, MMP-2 and MMP-9 ilomastat inhibited LIMK1-induced invasion of benign prostate epithelial cells. Over expression of LIMK1 resulted in increased collagenolytic activity of MMP-2, and secretion of pro-MMP2 and pro-MMP-9. Cells over expressing LIMK1 also exhibited increased expression of MT1-MMP, transcriptional activation and its localization to the plasma membrane. LIMK1 physically associates with MT1-MMP and is colocalized with it to the Golgi vesicles. We also noted increased expression of both MT1-MMP and LIMK1 in prostate tumor tissues.</p> <p>Conclusion</p> <p>Our results provide new information on regulation of MT1-MMP function by LIMK1 and showed for the first time, involvement of MMPs in LIMK1 induced cell invasion.</p

    Expression of LIM kinase 1 is associated with reversible G1/S phase arrest, chromosomal instability and prostate cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>LIM kinase 1 (LIMK1), a LIM domain containing serine/threonine kinase, modulates actin dynamics through inactivation of the actin depolymerizing protein cofilin. Recent studies have indicated an important role of LIMK1 in growth and invasion of prostate and breast cancer cells; however, the molecular mechanism whereby LIMK1 induces tumor progression is unknown. In this study, we investigated the effects of ectopic expression of LIMK1 on cellular morphology, cell cycle progression and expression profile of LIMK1 in prostate tumors.</p> <p>Results</p> <p>Ectopic expression of LIMK1 in benign prostatic hyperplasia cells (BPH), which naturally express low levels of LIMK1, resulted in appearance of abnormal mitotic spindles, multiple centrosomes and smaller chromosomal masses. Furthermore, a transient G1/S phase arrest and delayed G2/M progression was observed in BPH cells expressing LIMK1. When treated with chemotherapeutic agent Taxol, no metaphase arrest was noted in these cells. We have also noted increased nuclear staining of LIMK1 in tumors with higher Gleason Scores and incidence of metastasis.</p> <p>Conclusion</p> <p>Our results show that increased expression of LIMK1 results in chromosomal abnormalities, aberrant cell cycle progression and alteration of normal cellular response to microtubule stabilizing agent Taxol; and that LIMK1 expression may be associated with cancerous phenotype of the prostate.</p

    Potential involvement of extracellular signal-regulated kinase 1 and 2 in encystation of a primitive eukaryote, Giardia lamblia - Stage-specific activation and intracellular localization

    Get PDF
    Mitogen-activated protein kinase (MAPK) pathways are major signaling systems by which eukaryotic cells convert environmental cues to intracellular events such as proliferation and differentiation. We have identified Giardia lamblia homologues of two members of the MAPK family ERK1 and ERK2. Functional characterization of giardial ERK1 and ERK2 revealed that both kinases were expressed in trophozoites and encysting cells as 44- and 41-kDa polypeptides, respectively, and were catalytically active. Analysis of the kinetic parameters of the recombinant proteins showed that ERK2 is similar to5 times more efficient than ERK1 in phosphorylating myelin basic protein as a substrate, although the phosphorylating efficiency of the native ERK1 and ERK2 appeared to be the same. Immunofluorescence analysis of the subcellular localization of ERK1 and ERK2 in trophozoites showed ERK1 staining mostly in the median body and in the outer edges of the adhesive disc and ERK2 staining in the nuclei and in the caudal flagella. Our study also showed a noticeable change in the subcellular distribution of ERK2 during encystation, which became more punctate and mostly cytoplasmic, but no significant change in the ERK1 localization at any time during encystation. Interestingly, both ERK1 and ERK2 enzymes exhibited a significantly reduced kinase activity during encystation reaching a minimum at 24 h, except for an initial similar to2.5-fold increase in the ERK1 activity at 2 h, which resumed back to the normal levels at 48 h despite no apparent change in the expression level of either one of these kinases in encysting cells. A reduced concentration of the phosphorylated ERK1 and ERK2 was also evident in these cells at 24 h. Our study suggests a functional distinction between ERK1 and ERK2 and that these kinases may play a critical role in trophozoite differentiation into cysts

    Down-regulation of Cdc6, a cell cycle regulatory gene, in prostate cancer

    Get PDF
    CDC6 plays a critical role in regulation of the onset of DNA replication in eukaryotic cells. We have found that Cdc6 expression is down-regulated in prostate cancer as detected by semiquantitative reverse transcriptase-PCR of prostate cell lines and laser-captured microdissected prostate tissues. This result was substantiated by immunohistochemical analysis of paraffin-embedded tissue sections and immunoblot analysis of benign (BPH-1) and adenocarcinomatous prostatic cells. Furthermore, a 100-fold reduction in the transcription efficiency of the Cdc6 promoter-luciferase construct was noted in the metastatic PC3 cells compared with that in BPH-1 cells. Concentration of the E2F and Oct1 transcription factors that have putative binding sites in the Cdc6 promoter was substantially low in PC3 cells compared with BPH cells. Mutagenesis of the two E2F binding sites on the Cdc6 promoter resulted in increased promoter activity in PC3 cells owing to elimination of the negative regulation by pRb-E2F complex but not to the level of that obtained in BPH cells. We conclude that an altered interaction of transcription factors may be responsible for the down-regulation of Cdc6 transcription in PC3 cells. Our study suggests a potential use of the lack of CDC6 expression as an index of prostate cancer development

    Down-regulation of Cdc6, a cell cycle regulatory gene, in prostate cancer

    Get PDF
    CDC6 plays a critical role in regulation of the onset of DNA replication in eukaryotic cells. We have found that Cdc6 expression is down-regulated in prostate cancer as detected by semiquantitative reverse transcriptase-PCR of prostate cell lines and laser-captured microdissected prostate tissues. This result was substantiated by immunohistochemical analysis of paraffin-embedded tissue sections and immunoblot analysis of benign (BPH-1) and adenocarcinomatous prostatic cells. Furthermore, a 100-fold reduction in the transcription efficiency of the Cdc6 promoter-luciferase construct was noted in the metastatic PC3 cells compared with that in BPH-1 cells. Concentration of the E2F and Oct1 transcription factors that have putative binding sites in the Cdc6 promoter was substantially low in PC3 cells compared with BPH cells. Mutagenesis of the two E2F binding sites on the Cdc6 promoter resulted in increased promoter activity in PC3 cells owing to elimination of the negative regulation by pRb-E2F complex but not to the level of that obtained in BPH cells. We conclude that an altered interaction of transcription factors may be responsible for the down-regulation of Cdc6 transcription in PC3 cells. Our study suggests a potential use of the lack of CDC6 expression as an index of prostate cancer development

    Androgen regulates Cdc6 transcription through interactions between androgen receptor and E2F transcription factor in prostate cancer cells

    Get PDF
    Androgen receptor plays a critical role in the development and maintenance of cancers in the prostate. Earlier, we have shown that Cdc6, a regulatory protein for initiation of DNA replication, is down regulated in androgen-insensitive prostate cancer cells. In this report, we studied the involvement of androgen, mediated through androgen receptor (AR) in regulation of Cdc6 expression. Our results demonstrated that androgen treatment stimulated Cdc6 expression in xenograft tumors and androgen-sensitive prostate cancer cells. We also showed that androgen treatment stimulated Cdc6 transcription through possible interaction of AR with the ARE sequence in the Cdc6 promoter and that the stimulatory effect of androgen required intact E2F binding sites in the promoter. Androgen treatment differentially altered nuclear availability of E2F1 and E2F3, and increased the amount of hypophosphorylated retinoblastoma protein (pRb) in the nucleus in a time dependent fashion. We further showed that AR interacted with E2F transcription factors in a ligand-independent manner and that ligand-bound AR was less efficient in interacting with E2F proteins. DNA-protein interaction assays indicated that androgen treatment altered binding of E2F1 to the Cdc6 promoter in prostate cancer cells. We conclude that AR regulates Cdc6 transcription through interaction with the Cdc6 promoter, and complex formation with E2F1 and E2F3 in a differential manner. (c) 2008 Elsevier B.V. All rights reserved

    LIM kinase 1 is essential for the invasive growth of prostate epithelial cells - Implications in prostate cancer

    Get PDF
    Mammalian LIM kinase 1 (LIMK1) is involved in reorganization of actin cytoskeleton through inactivating phosphorylation of the ADF family protein cofilin, which depolymerizes actin filaments. Maintenance of the actin dynamics in an ordered fashion is essential for stabilization of cell shape or promotion of cell motility depending on the cell type. These are the two key phenomena that may become altered during acquisition of the metastatic phenotype by cancer cells. Here we show that LIMK1 is overexpressed in prostate tumors and in prostate cancer cell lines, that the concentration of phosphorylated cofilin is higher in metastatic prostate cancer cells, and that a partial reduction of LIMK1 altered cell proliferation by arresting cells at G(2)/ M, changed cell shape, and abolished the invasiveness of metastatic prostate cancer cells. We also show that the ectopic expression of LIMK1 promotes acquisition of invasive phenotype by the benign prostate epithelial cells. Our data provide evidence of a novel role of LIMK1 in regulating cell division and invasive property of prostate cancer cells and indicate that the effect is not mediated by phosphorylation of cofilin. Our study correlates with the recent observations showing a metastasis-associated chromosomal gain on 7q11.2 in prostate cancer, suggesting a possible gain in LIMK1 DNA (7q11.23)
    corecore