6 research outputs found

    The World Health Organization's External Quality Assurance System Proficiency Testing Program Has Improved the Accuracy of Antimicrobial Susceptibility Testing and Reporting among Participating Laboratories Using NCCLS Methods

    No full text
    A total of 150 laboratories in 33 countries that followed the NCCLS testing procedures participated in the World Health Organization's External Quality Assurance System for Antimicrobial Susceptibility Testing (EQAS-AST) from January 1998 through March 2001. Laboratories tested seven bacterial isolates for antimicrobial resistance and reported the results to the Centers for Disease Control and Prevention (CDC) in Atlanta, Ga. The results were compared to the results generated at the CDC with the NCCLS broth microdilution and disk diffusion reference methods. Although there were few testing errors with Salmonella enterica subsp. enterica serovar Enteritidis, drugs that are not appropriate for therapy of Salmonella infections were tested and reported by 136 (91%) of 150 laboratories. In addition, 29 (20%) of 150 laboratories used the Staphylococcus aureus breakpoints to report oxacillin results for Staphylococcus saprophyticus. For a vanB-containing Enterococcus faecalis strain, 124 (83%) of 150 laboratories correctly reported vancomycin results that were ±1 doubling dilution from the reference MIC or ±3 mm from the reference disk diffusion result. Of the laboratories that tested Streptococcus agalactiae by disk diffusion, 17% reported nonsusceptible results for penicillin in error. While 110 laboratories (73%) tested the S. pneumoniae challenge isolate against a fluoroquinolone, 83% tested it against ciprofloxacin, for which there are no NCCLS interpretive criteria. Ten of 12 laboratories testing levofloxacin and 4 of 4 laboratories testing ofloxacin by an MIC method correctly reported resistant results for the isolate. Feedback letters sent to participating laboratories highlighted areas of susceptibility testing in individual laboratories that needed improvement. The positive impact of the feedback letters and the overall effectiveness of the EQAS program were documented in repeat testing challenges with pneumococci and staphylococci. The 31 and 19% increases in the numbers of laboratories using appropriate testing methods for pneumococci and staphylococci, respectively, in 2000 versus 1998 indicate that laboratory performance is improving

    Pulsed-Field Gel Electrophoresis Typing of Oxacillin-Resistant Staphylococcus aureus Isolates from the United States: Establishing a National Database

    No full text
    Oxacillin-resistant Staphylococcus aureus (ORSA) is a virulent pathogen responsible for both health care-associated and community onset disease. We used SmaI-digested genomic DNA separated by pulsed-field gel electrophoresis (PFGE) to characterize 957 S. aureus isolates and establish a database of PFGE patterns. In addition to PFGE patterns of U.S. strains, the database contains patterns of representative epidemic-type strains from the United Kingdom, Canada, and Australia; previously described ORSA clonal-type isolates; 13 vancomycin-intermediate S. aureus (VISA) isolates, and two high-level vancomycin-resistant, vanA-positive strains (VRSA). Among the isolates from the United States, we identified eight lineages, designated as pulsed-field types (PFTs) USA100 through USA800, seven of which included both ORSA and oxacillin-susceptible S. aureus isolates. With the exception of the PFT pairs USA100 and USA800, and USA300 and USA500, each of the PFTs had a unique multilocus sequence type and spa type motif. The USA100 PFT, previously designated as the New York/Tokyo clone, was the most common PFT in the database, representing 44% of the ORSA isolates. USA100 isolates were typically multiresistant and included all but one of the U.S. VISA strains and both VRSA isolates. Multiresistant ORSA isolates from the USA200, -500, and -600 PFTs have PFGE patterns similar to those of previously described epidemic strains from Europe and Australia. The USA300 and -400 PFTs contained community isolates resistant only to β-lactam drugs and erythromycin. Noticeably absent from the U.S. database were isolates with the previously described Brazilian and EMRSA15 PFGE patterns. These data suggest that there are a limited number of ORSA genotypes present in the United States

    Vancomycin-Resistant Staphylococcus aureus Isolate from a Patient in Pennsylvania

    No full text
    A vancomycin-resistant Staphylococcus aureus (VRSA) isolate was obtained from a patient in Pennsylvania in September 2002. Species identification was confirmed by standard biochemical tests and analysis of 16S ribosomal DNA, gyrA, and gyrB sequences; all of the results were consistent with the S. aureus identification. The MICs of a variety of antimicrobial agents were determined by broth microdilution and macrodilution methods following National Committee for Clinical Laboratory Standards (NCCLS) guidelines. The isolate was resistant to vancomycin (MIC = 32 μg/ml), aminoglycosides, β-lactams, fluoroquinolones, macrolides, and tetracycline, but it was susceptible to linezolid, minocycline, quinupristin-dalfopristin, rifampin, teicoplanin, and trimethoprim-sulfamethoxazole. The isolate, which was originally detected by using disk diffusion and a vancomycin agar screen plate, was vancomycin susceptible by automated susceptibility testing methods. Pulsed-field gel electrophoresis (PFGE) of SmaI-digested genomic DNA indicated that the isolate belonged to the USA100 lineage (also known as the New York/Japan clone), the most common staphylococcal PFGE type found in hospitals in the United States. The VRSA isolate contained two plasmids of 120 and 4 kb and was positive for mecA and vanA by PCR amplification. The vanA sequence was identical to the vanA sequence present in Tn1546. A DNA probe for vanA hybridized to the 120-kb plasmid. This is the second VRSA isolate reported in the United States

    High-throughput quantitation of SARS-CoV-2 antibodies in a single-dilution homogeneous assay

    No full text
    Abstract SARS-CoV-2 emerged in late 2019 and has since spread around the world, causing a pandemic of the respiratory disease COVID-19. Detecting antibodies against the virus is an essential tool for tracking infections and developing vaccines. Such tests, primarily utilizing the enzyme-linked immunosorbent assay (ELISA) principle, can be either qualitative (reporting positive/negative results) or quantitative (reporting a value representing the quantity of specific antibodies). Quantitation is vital for determining stability or decline of antibody titers in convalescence, efficacy of different vaccination regimens, and detection of asymptomatic infections. Quantitation typically requires two-step ELISA testing, in which samples are first screened in a qualitative assay and positive samples are subsequently analyzed as a dilution series. To overcome the throughput limitations of this approach, we developed a simpler and faster system that is highly automatable and achieves quantitation in a single-dilution screening format with sensitivity and specificity comparable to those of ELISA
    corecore