21 research outputs found
Spatial and Temporal Sensing Limits of Microtubule Polarization in Neuronal Growth Cones by Intracellular Gradients and Forces
Neuronal growth cones are the most sensitive amongst eukaryotic cells in
responding to directional chemical cues. Although a dynamic microtubule
cytoskeleton has been shown to be essential for growth cone turning, the
precise nature of coupling of the spatial cue with microtubule polarization is
less understood. Here we present a computational model of microtubule
polarization in a turning neuronal growth cone (GC). We explore the limits of
directional cues in modifying the spatial polarization of microtubules by
testing the role of microtubule dynamics, gradients of regulators and
retrograde forces along filopodia. We analyze the steady state and transition
behavior of microtubules on being presented with a directional stimulus. The
model makes novel predictions about the minimal angular spread of the chemical
signal at the growth cone and the fastest polarization times. A regulatory
reaction-diffusion network based on the cyclic
phosphorylation-dephosphorylation of a regulator predicts that the receptor
signal magnitude can generate the maximal polarization of microtubules and not
feedback loops or amplifications in the network. Using both the
phenomenological and network models we have demonstrated some of the physical
limits within which the MT polarization system works in turning neuron.Comment: 7 figures and supplementary materia
Aligning Carbon Fibers in Micro-Extruded Composite Ink
Direct write processes include a wide range of additive manufacturing techniques with the ability to fabricate structures directly onto planar and non-planar surfaces. Most additive manufacturing techniques use unreinforced polymers to produce parts. By adding carbon fiber as a reinforcing material, properties such as mechanical strength, electrical conductivity, and thermal conductivity can be enhanced. Carbon fibers can be long and continuous, or short and discontinuous. The strength of carbon fiber composite parts is greatly increased when the fibers are preferentially aligned. This research focuses on increasing the strength of additively manufactured parts reinforced using discontinuous carbon fibers that have been aligned during the micro extrusion process.
A design of experiments (DOE) approach was used to identify significant process parameters affecting fiber alignment. Factors such as the length of carbon fibers, nozzle diameter, fiber loading fraction, air pressure, translational speed and standoff distance were considered. A two dimensional Fast Fourier Transform (2D FFT) was used to quantify the degree of fiber alignment in the extruded composite inks. ImageJ software supported by an oval profile plugin was used with micrographs of printed samples to obtain the carbon fiber alignment values. The optimal value for the factors was derived by identifying the significant main and interaction effects.
Based on the results of the DOE, tensile test samples were printed with fibers aligned parallel and perpendicular to the tensile axis. A standard test method for tensile properties of plastic revealed that the extruded parts with fibers aligned along the tensile axis were better in tensile strength and modulus
Three Dimensional Digital Alloying with Reactive Metal Inks
3D printing of multifunctional components using two or more materials is a rapidly growing area of research. Metallic alloy inks have been used with various 3D printing techniques to create functional components such as antennas, inductors, resistors, and biocompatible implants. Most of these printing techniques use premixed metallic alloy inks or nanoalloy particles with a fixed composition to fabricate the functional part. Since the properties of alloys vary with changes in the elemental composition, a printing process which could digitally dispense alloy inks having specific desired compositions would enable different functionalities and be highly desirable.
Using the binary copper-nickel system as an example, the formation of alloy with metal precursor inks is presented. Since copper and nickel both have a face centered cubic (FCC) structure and show complete miscibility in each other, formation of their nanoalloy is, in theory, relatively easy. By printing metal precursor inks rather than nanoparticle suspensions, problems associated with the nanoparticle inks such as ink stability and nozzle clogging can be avoided. Copper and nickel precursor inks were formulated having rheological properties suitable for inkjet printing. Reduction of metal inks was studied under various conditions. The sintered metal and alloy structures were characterized using thermal analysis, infrared spectroscopy, energy-dispersive x-ray spectroscopy (EDS), and x-ray diffraction. Nickel, a ferromagnetic metal, showed novel microstructures such as aligned nanowires and nanowire grids when reduced in the presence of a magnetic field. These microstructures had enhanced anisotropic electrical and magnetic properties along the direction of the nanowire.
The reduction of combined ink solutions (copper and nickel) showed formation of a two phase with copper as one phase and a nickel rich alloy as other. These structures demonstrated no change in electrical resistivity when exposed to an oxidation rich environment. To achieve a homogeneous alloy formation, the copper phase and the nickel rich phase were diffused together at high temperatures. Copper nickel alloy inks with ratios Cu30Ni70, Cu50Ni50, and Cu70Ni30 were formulated and reduced at 230 °C and later high temperature diffusion was achieved at 800 °C. The lattice parameter of the alloy phase for the inks with ratio Cu30Ni70 was 3.5533Å, Cu50Ni50 was 3.5658 Å, and Cu70Ni30 was 3.5921 Å. Using Vegard’s law, the composition of the alloy phases for the three samples were estimated to be Cu32Ni68, Cu46Ni54, and Cu75Ni25. This formation of the desired alloy composition can open the door to numerous applications in biomedical and electronics sectors, among other
Recommended from our members
Corrosion Behavior of Selectively Laser Melted CoCrFeMnNi High Entropy Alloy
CoCrFeMnNi high entropy alloys (HEAs) were additively manufactured (AM) by laser powder bed fusion and their corrosion resistance in 3.5 wt% NaCl solution was studied by potentiodynamic polarization and electrochemical impedance spectroscopy tests. A systematic study of AM CoCrFeMnNi HEAs’ porosity under a wide range of laser processing parameters was conducted and a processing map was constructed to identify the optimal laser processing window for CoCrFeMnNi HEAs. The near fully dense AM CoCrFeMnNi HEAs exhibit a unique non-equilibrium microstructure consisting of tortuous grain boundaries, sub-grain cellular structures, columnar dendrites, associated with some processing defects such as micro-pores. Compared with conventional as-cast counterpart, the AM CoCrFeMnNi HEAs showed higher pitting resistance (ΔE) and greater polarization resistance (Rp). The superior corrosion resistance of AM CoCrFeMnNi HEAs may be attributed to the homogeneous elemental distribution and lower density of micro-pores. Our study widens the toolbox to manufacture HEAs with exceptional corrosion resistance by additive manufacturing
Magnetic Field Patterning of Nickel Nanowire Film Realized by Printed Precursor Inks
This paper demonstrates an easily prepared novel material and approach to producing aligned nickel (Ni) nanowires having unique and customizable structures on a variety of substrates for electronic and magnetic applications. This is a new approach to producing printed metallic Ni structures from precursor materials, and it provides a novel technique for nanowire formation during reduction. This homogeneous solution can be printed in ambient conditions, and it forms aligned elemental Ni nanowires over large areas upon heating in the presence of a magnetic field. The use of templates or subsequent purification are not required. This technique is very flexible, and allows the preparation of unique patterns of nanowires which provides opportunities to produce structures with enhanced anisotropic electrical and magnetic properties. An example of this is the unique fabrication of aligned nanowire grids by overlaying layers of nanowires oriented at different angles with respect to each other. The resistivity of printed and cured films was found to be as low as 560 mu ohm center dot cm. The saturation magnetization was measured to be 30 emu center dot g(-1), which is comparable to bulk Ni. Magnetic anisotropy was induced with an axis along the direction of the applied magnetic field, giving soft magnetic properties
Magnetic Field Patterning of Nickel Nanofibers Using Nickel Precursor Ink
This paper demonstrates an easily prepared novel material and approach to producing aligned nickel (Ni) nanowires having unique and customizable structures on a variety of substrates for electronic and magnetic applications. This is a new approach to producing printed metallic Ni structures from precursor materials, and it provides a novel technique for nanowire formation during reduction. This homogeneous solution can be printed in ambient conditions, and it forms aligned elemental Ni nanowires over large areas upon heating in the presence of a magnetic field. The use of templates or subsequent purification are not required. This technique is very flexible, and allows the preparation of unique patterns of nanowires which provides opportunities to produce structures with enhanced anisotropic electrical and magnetic properties. An example of this is the unique fabrication of aligned nanowire grids by overlaying layers of nanowires oriented at different angles with respect to each other. The resistivity of printed and cured films was found to be as low as 560 µΩ·cm. The saturation magnetization was measured to be 30 emu·g −1 , which is comparable to bulk Ni. Magnetic anisotropy was induced with an axis along the direction of the applied magnetic field, giving soft magnetic properties
Formation of Copper Nickel Bimetallic Nanoalloy Film Using Precursor Inks
Precursor (Metal-organic decomposition (MOD)) inks are used to fabricate 2D and 3D printed conductive structures directly onto a substrate. By formulating a nanoalloy structure containing multiple metals, the opportunity to modify chemical and physical properties exists. In this paper, a copper-nickel bimetallic nanoalloy film was fabricated by mixing copper and nickel precursor inks and sintering them in vacuum. The individual elemental inks were formulated and characterized using SEM, EDS, and XRD. During thermal processing, elemental copper forms first and is followed by the formation of bimetallic copper-nickel alloy. The encapsulation of the underlying copper by the nickel-rich alloy provides excellent oxidation resistance. No change in film resistance was observed after the film was exposed to an oxygen plasma. Nanoalloy films printed using reactive metallic inks have a variety of important applications involving local control of alloy composition. Examples include facile formation of layered nanostructures, and electrical conductivity with oxidative stability
Materials Sciences and Applications
Precursor (Metal-organic decomposition (MOD)) inks are used to fabricate 2D and 3D printed conductive structures directly onto a substrate. By formulating a nanoalloy structure containing multiple metals, the opportunity to modify chemical and physical properties exists. In this paper, a copper-nickel bimetallic nanoalloy film was fabricated by mixing copper and nickel precursor inks and sintering them in vacuum. The individual elemental inks were formulated and characterized using SEM, EDS, and XRD. During thermal processing, elemental copper forms first and is followed by the formation of bimetallic copper-nickel alloy. The encapsulation of the underlying copper by the nickel-rich alloy provides excellent oxidation resistance. No change in film resistance was observed after the film was exposed to an oxygen plasma. Nanoalloy films printed using reactive metallic inks have a variety of important applications involving local control of alloy composition. Examples include facile formation of layered nanostructures, and electrical conductivity with oxidative stability
Recommended from our members
Electrochemical Behavior of Catalytic Metallic Glasses
Metallic Glasses are multi-component alloys with disordered atomic structures and unique and attractive properties such as ultra-high strength, soft magnetism, and excellent corrosion/wear resistance. In addition, they may be thermoplastically processed in the supercooled liquid region to desired shapes across multiple length-scales. Recently developed metallic glasses based on noble metals (such as Pt and Pd) are highly active in catalytic reactions such as hydrogen oxidation, oxygen reduction, and degradation of organic chemicals for environmental remediation. However, there is a limited understanding of the underlying electrochemical mechanisms and surface characteristics of catalytically active metallic glasses. Here, we demonstrate the influence of alloy chemistry and the associated electronic structure on the activity of a systematic series of Pt42.5−xPdxCu27Ni9.5P21 bulk metallic glasses (BMGs) with x = 0 to 42.5 at%. The activity and electrochemically active surface area as a function of composition are in the form of volcano plots, with a peak around an equal proportion of Pt and Pd. These amorphous alloys showed more than two times the hydrogen oxidation reactivity compared to pure Pt. This high activity was attributed to their lower electron work function and higher binding energy of Pt core level that reduced charge-transfer resistance and improved electrocatalytic activity from weakened chemisorption of protons.
To address the high cost associated with noble-metal-based amorphous catalysts, the performance of non-noble M100-xPx alloys was evaluated with a systematic variation in chemistry (M = Ni, Co; x = 0, 10, 15, 20, 30 at%). These alloys were synthesized by a scalable pulsed electrodeposition approach with glass formation seen in the range of 10 at% to 20 at% P. Enhanced corrosion resistance was observed with increasing phosphorus content as evidenced by the significant decrease in corrosion current density and ten-fold higher polarization resistance of M80P20 (M = Ni, Co) compared to its corresponding pure metal in representative electrolytes. Surface characterization showed enrichment of phosphorus in the passive layer, that likely promoted the restoration of the protective hypophosphite phase. The overpotential for hydrogen evolution reaction decreased by 35% and 45% in the case of Ni100−xPx and Co100−xPx, respectively, with increasing phosphorus content from 0 at% to 20 at%. Also, the M80P20 (M = Ni, Co) metallic glasses demonstrated excellent oxygen evolution reaction efficiency with a 10 mA/cm2 current density at 50% overpotential compared to pure Pt in alkaline media. The high activity and excellent durability of the non-noble amorphous alloys for hydrogen/oxygen evolution reactions (HER/OER) were attributed to the decreased binding energy of the P core level due to the synergy between the proton-acceptor (P centers) and hydride/hydroxide-acceptor (metal centers) sites
Tumid lupus erythematosus: An intriguing dermatopathological connotation treated successfully with topical tacrolimus and hydroxyxhloroquine combination
Tumid lupus erythematosus (LE) is a rare variant of lupus erythematosus, which often follows a favorable course. A case of a young woman is illustrated, who presented with an asymptomatic erythematous, solitary plaque over her face. Histopathological and direct immunofluorescence examination established a diagnosis of tumid lupus erythematosus. She responded slowly and near-completely to hydroxychloroquine sulfate; however, a flare up occurred a month later. Addition of topical tacrolimus 0.1% resulted in complete regression without leaving any residual changes. No recurrence was seen subsequently