21 research outputs found

    Spatial and Temporal Sensing Limits of Microtubule Polarization in Neuronal Growth Cones by Intracellular Gradients and Forces

    Get PDF
    Neuronal growth cones are the most sensitive amongst eukaryotic cells in responding to directional chemical cues. Although a dynamic microtubule cytoskeleton has been shown to be essential for growth cone turning, the precise nature of coupling of the spatial cue with microtubule polarization is less understood. Here we present a computational model of microtubule polarization in a turning neuronal growth cone (GC). We explore the limits of directional cues in modifying the spatial polarization of microtubules by testing the role of microtubule dynamics, gradients of regulators and retrograde forces along filopodia. We analyze the steady state and transition behavior of microtubules on being presented with a directional stimulus. The model makes novel predictions about the minimal angular spread of the chemical signal at the growth cone and the fastest polarization times. A regulatory reaction-diffusion network based on the cyclic phosphorylation-dephosphorylation of a regulator predicts that the receptor signal magnitude can generate the maximal polarization of microtubules and not feedback loops or amplifications in the network. Using both the phenomenological and network models we have demonstrated some of the physical limits within which the MT polarization system works in turning neuron.Comment: 7 figures and supplementary materia

    Aligning Carbon Fibers in Micro-Extruded Composite Ink

    Get PDF
    Direct write processes include a wide range of additive manufacturing techniques with the ability to fabricate structures directly onto planar and non-planar surfaces. Most additive manufacturing techniques use unreinforced polymers to produce parts. By adding carbon fiber as a reinforcing material, properties such as mechanical strength, electrical conductivity, and thermal conductivity can be enhanced. Carbon fibers can be long and continuous, or short and discontinuous. The strength of carbon fiber composite parts is greatly increased when the fibers are preferentially aligned. This research focuses on increasing the strength of additively manufactured parts reinforced using discontinuous carbon fibers that have been aligned during the micro extrusion process. A design of experiments (DOE) approach was used to identify significant process parameters affecting fiber alignment. Factors such as the length of carbon fibers, nozzle diameter, fiber loading fraction, air pressure, translational speed and standoff distance were considered. A two dimensional Fast Fourier Transform (2D FFT) was used to quantify the degree of fiber alignment in the extruded composite inks. ImageJ software supported by an oval profile plugin was used with micrographs of printed samples to obtain the carbon fiber alignment values. The optimal value for the factors was derived by identifying the significant main and interaction effects. Based on the results of the DOE, tensile test samples were printed with fibers aligned parallel and perpendicular to the tensile axis. A standard test method for tensile properties of plastic revealed that the extruded parts with fibers aligned along the tensile axis were better in tensile strength and modulus

    Three Dimensional Digital Alloying with Reactive Metal Inks

    Get PDF
    3D printing of multifunctional components using two or more materials is a rapidly growing area of research. Metallic alloy inks have been used with various 3D printing techniques to create functional components such as antennas, inductors, resistors, and biocompatible implants. Most of these printing techniques use premixed metallic alloy inks or nanoalloy particles with a fixed composition to fabricate the functional part. Since the properties of alloys vary with changes in the elemental composition, a printing process which could digitally dispense alloy inks having specific desired compositions would enable different functionalities and be highly desirable. Using the binary copper-nickel system as an example, the formation of alloy with metal precursor inks is presented. Since copper and nickel both have a face centered cubic (FCC) structure and show complete miscibility in each other, formation of their nanoalloy is, in theory, relatively easy. By printing metal precursor inks rather than nanoparticle suspensions, problems associated with the nanoparticle inks such as ink stability and nozzle clogging can be avoided. Copper and nickel precursor inks were formulated having rheological properties suitable for inkjet printing. Reduction of metal inks was studied under various conditions. The sintered metal and alloy structures were characterized using thermal analysis, infrared spectroscopy, energy-dispersive x-ray spectroscopy (EDS), and x-ray diffraction. Nickel, a ferromagnetic metal, showed novel microstructures such as aligned nanowires and nanowire grids when reduced in the presence of a magnetic field. These microstructures had enhanced anisotropic electrical and magnetic properties along the direction of the nanowire. The reduction of combined ink solutions (copper and nickel) showed formation of a two phase with copper as one phase and a nickel rich alloy as other. These structures demonstrated no change in electrical resistivity when exposed to an oxidation rich environment. To achieve a homogeneous alloy formation, the copper phase and the nickel rich phase were diffused together at high temperatures. Copper nickel alloy inks with ratios Cu30Ni70, Cu50Ni50, and Cu70Ni30 were formulated and reduced at 230 °C and later high temperature diffusion was achieved at 800 °C. The lattice parameter of the alloy phase for the inks with ratio Cu30Ni70 was 3.5533Å, Cu50Ni50 was 3.5658 Å, and Cu70Ni30 was 3.5921 Å. Using Vegard’s law, the composition of the alloy phases for the three samples were estimated to be Cu32Ni68, Cu46Ni54, and Cu75Ni25. This formation of the desired alloy composition can open the door to numerous applications in biomedical and electronics sectors, among other

    Magnetic Field Patterning of Nickel Nanowire Film Realized by Printed Precursor Inks

    Get PDF
    This paper demonstrates an easily prepared novel material and approach to producing aligned nickel (Ni) nanowires having unique and customizable structures on a variety of substrates for electronic and magnetic applications. This is a new approach to producing printed metallic Ni structures from precursor materials, and it provides a novel technique for nanowire formation during reduction. This homogeneous solution can be printed in ambient conditions, and it forms aligned elemental Ni nanowires over large areas upon heating in the presence of a magnetic field. The use of templates or subsequent purification are not required. This technique is very flexible, and allows the preparation of unique patterns of nanowires which provides opportunities to produce structures with enhanced anisotropic electrical and magnetic properties. An example of this is the unique fabrication of aligned nanowire grids by overlaying layers of nanowires oriented at different angles with respect to each other. The resistivity of printed and cured films was found to be as low as 560 mu ohm center dot cm. The saturation magnetization was measured to be 30 emu center dot g(-1), which is comparable to bulk Ni. Magnetic anisotropy was induced with an axis along the direction of the applied magnetic field, giving soft magnetic properties

    Magnetic Field Patterning of Nickel Nanofibers Using Nickel Precursor Ink

    Get PDF
    This paper demonstrates an easily prepared novel material and approach to producing aligned nickel (Ni) nanowires having unique and customizable structures on a variety of substrates for electronic and magnetic applications. This is a new approach to producing printed metallic Ni structures from precursor materials, and it provides a novel technique for nanowire formation during reduction. This homogeneous solution can be printed in ambient conditions, and it forms aligned elemental Ni nanowires over large areas upon heating in the presence of a magnetic field. The use of templates or subsequent purification are not required. This technique is very flexible, and allows the preparation of unique patterns of nanowires which provides opportunities to produce structures with enhanced anisotropic electrical and magnetic properties. An example of this is the unique fabrication of aligned nanowire grids by overlaying layers of nanowires oriented at different angles with respect to each other. The resistivity of printed and cured films was found to be as low as 560 µΩ·cm. The saturation magnetization was measured to be 30 emu·g −1 , which is comparable to bulk Ni. Magnetic anisotropy was induced with an axis along the direction of the applied magnetic field, giving soft magnetic properties

    Formation of Copper Nickel Bimetallic Nanoalloy Film Using Precursor Inks

    Get PDF
    Precursor (Metal-organic decomposition (MOD)) inks are used to fabricate 2D and 3D printed conductive structures directly onto a substrate. By formulating a nanoalloy structure containing multiple metals, the opportunity to modify chemical and physical properties exists. In this paper, a copper-nickel bimetallic nanoalloy film was fabricated by mixing copper and nickel precursor inks and sintering them in vacuum. The individual elemental inks were formulated and characterized using SEM, EDS, and XRD. During thermal processing, elemental copper forms first and is followed by the formation of bimetallic copper-nickel alloy. The encapsulation of the underlying copper by the nickel-rich alloy provides excellent oxidation resistance. No change in film resistance was observed after the film was exposed to an oxygen plasma. Nanoalloy films printed using reactive metallic inks have a variety of important applications involving local control of alloy composition. Examples include facile formation of layered nanostructures, and electrical conductivity with oxidative stability

    Materials Sciences and Applications

    Get PDF
    Precursor (Metal-organic decomposition (MOD)) inks are used to fabricate 2D and 3D printed conductive structures directly onto a substrate. By formulating a nanoalloy structure containing multiple metals, the opportunity to modify chemical and physical properties exists. In this paper, a copper-nickel bimetallic nanoalloy film was fabricated by mixing copper and nickel precursor inks and sintering them in vacuum. The individual elemental inks were formulated and characterized using SEM, EDS, and XRD. During thermal processing, elemental copper forms first and is followed by the formation of bimetallic copper-nickel alloy. The encapsulation of the underlying copper by the nickel-rich alloy provides excellent oxidation resistance. No change in film resistance was observed after the film was exposed to an oxygen plasma. Nanoalloy films printed using reactive metallic inks have a variety of important applications involving local control of alloy composition. Examples include facile formation of layered nanostructures, and electrical conductivity with oxidative stability

    Tumid lupus erythematosus: An intriguing dermatopathological connotation treated successfully with topical tacrolimus and hydroxyxhloroquine combination

    No full text
    Tumid lupus erythematosus (LE) is a rare variant of lupus erythematosus, which often follows a favorable course. A case of a young woman is illustrated, who presented with an asymptomatic erythematous, solitary plaque over her face. Histopathological and direct immunofluorescence examination established a diagnosis of tumid lupus erythematosus. She responded slowly and near-completely to hydroxychloroquine sulfate; however, a flare up occurred a month later. Addition of topical tacrolimus 0.1% resulted in complete regression without leaving any residual changes. No recurrence was seen subsequently
    corecore