7 research outputs found

    Nutraceuticals and mitochondrial oxidative stress: bridging the gap in the management of bronchial asthma

    Full text link
    AbstractAsthma is a chronic inflammatory disease primarily characterized by inflammation and reversible bronchoconstriction. It is currently one of the leading causes of morbidity and mortality in the world. Oxidative stress further complicates the pathology of the disease. The current treatment strategies for asthma mainly involve the use of anti-inflammatory agents and bronchodilators. However, long-term usage of such medications is associated with severe adverse effects and complications. Hence, there is an urgent need to develop newer, novel, and safe treatment modalities for the management of asthma. This has therefore prompted further investigations and detailed research to identify and develop novel therapeutic interventions from potent untapped resources. This review focuses on the significance of oxidative stressors that are primarily derived from both mitochondrial and non-mitochondrial sources in initiating the clinical features of asthma. The review also discusses the biological scavenging system of the body and factors that may lead to its malfunction which could result in altered states. Furthermore, the review provides a detailed insight into the therapeutic role of nutraceuticals as an effective strategy to attenuate the deleterious effects of oxidative stress and may be used in the mitigation of the cardinal features of bronchial asthma.</jats:p

    Journey of Rosmarinic Acid as Biomedicine to Nano-Biomedicine for Treating Cancer: Current Strategies and Future Perspectives

    Full text link
    Rosmarinic acid (RA) is a polyphenolic metabolite found in various culinary, dietary sources, and medicinal plants like Coleus scutellarioides (Linn) Benth., Lavandula angustifolia Linn., Mellisa officinalis Linn., Origanum vulgare Linn., Rosmarinus officinalis Linn., Zataria multiflora Boiss. and Zhumeria majdae Rech. F. Apart from its dietary and therapeutic values, RA is an important anticancer phytochemical owing to its multi-targeting anticancer mechanism. These properties provide a scope for RA’s therapeutic uses beyond its traditional use as a dietary source. However, its oral bioavailability is limited due to its poor solubility and permeability. This impedes its efficacy in treating cancer. Indeed, in recent years, tremendous efforts have been put towards the development of nanoformulations of RA for treating cancer. However, this research is in its initial stage as bringing a nanoparticle into the market itself is associated with many issues such as stability, toxicity, and scale-up issues. Considering these pitfalls during formulation development and overcoming them would surely provide a new face to RA as a nanomedicine to treat cancer. A literature search was conducted to systematically review the various biological sources, extraction techniques, and anticancer mechanisms through which RA showed multiple therapeutic effects. Various nanocarriers of RA pertaining to its anticancer activity are also discussed in this review.</jats:p

    Treatment strategies for HIV infection with emphasis on role of CRISPR/Cas9 gene: Success so far and road ahead.

    Full text link
    Advances in biotechnology have led to improving human health with number of novel approaches to mitigate life-threatening diseases such as human immunodeficiency virus (HIV) infection, cancer, and neurodegenerative diseases. In the case of HIV, the damage caused by the retrovirus to the immune system leads to opportunistic infection as well as an elevated risk of autoimmune disease and cancer. Furthermore, clinical symptoms associated with the virus itself may arise. Antiretroviral drug therapy using reverse transcriptase inhibitors, protease inhibitors, fusion inhibitor, chemokine receptor 5 antagonist and integrase strand transfer inhibitors have shown promising results in treating HIV infection and available in market in the form of various dosage forms. However, they are unable to completely cure the disease because of complexity in pathogenesis of HIV. In addition, these drugs have some limitations of poor solubility, permeability or, poor receptor binding capacity. To overcome these drawbacks, many novel drug delivery systems for the drugs belonging to above mentioned categories have been developed. The possibility of treating HIV infection using CRISPR-Cas9 gene editing has been found in 2015. This provided a new area of research to the scientists who are working towards alternative treatment strategies for HIV infections. The present article describes about various treatment strategies used to treat HIV infections with special emphasis on the role of CRISPR/Cas9 gene-based technology. The potential benefits of specific epigenetic modification in the c-c chemokine receptor 5 gene (CCR5) via various delivery methods are also highlighted
    corecore