124 research outputs found

    NATURAL PRODUCTS AS AN IMPORTANT LEADS FOR DISCOVERY OF NEW ANTITUBERCULAR AGENTS: A REVIEW

    Get PDF
    There is a very much need for a discovery of new molecules a potent molecule that can cure tuberculosis and prevent the recurrence. A multidisciplinary approach is required to procure a potent bioactive compound and this includes expertise in the fields of ethnobotany, ethnopharmacology and Phytochemistry. The present communication acts as a bioprospecting source for the drug discovery against tuberculosis, including several anti tubercular agents which is used by used by tribal people and prescribed by THPS which showed a good inhibition rate. Therefore, this review strives to describe the literature on the traditional plants/potent molecules those have been proved to have antimicrobial activity and to provide essential discussion and accelerate the research.Â

    ANTIOXIDANT AND ANTI-PROLIFERATIVE EFFECTS OF AN ETHYL ACETATE FRACTION OF THE HYDRO-ETHANOLIC EXTRACT OF SYNEDRELLA NODIFLORA (L) GAERTN

    Get PDF
    Objective: Synedrella nodiflora is traditionally used in the treatment of several ailments. Pharmacologically, this plant has anticonvulsant, sedative, anti-nociceptive and anti-proliferative effects. This study further investigated S. nodiflora for its antioxidant and in vitro inhibition of cancerous cell lines. Methods: Phytochemical assays, and the DPPH radical scavenging method were employed in preliminary screening for antioxidant activities of the crude hydro-ethanolic extract (SNE) and resulting fractions. The potent ethyl acetate fraction (EAF), was further investigated for total phenol and flavonoid contents, reducing power, lipid peroxidation potential, and cytotoxic effects on human breast cancer (MCF-7), leukemic (Jurkat), and normal liver (Chang’s liver) cell lines. Results: The extract contained phenols, flavonoids, tannins, glycosides, sterols, terpenoids, and alkaloids. It scavenged for DPPH with an IC50 of 114 ”g/ml, whereas that of EAF was 8.9 ”g/ml. EAF prevented peroxidation of egg lecithin at an IC50 of 24.01±0.08 ”g/ml. These IC50s are four and three times lower than the reference standards. EAF produced anti-proliferative effects against MCF-7, and Jurkat cell lines with IC50s of 205.2 and 170.9 ”g/ml, respectively. EAF had a high IC50 of 252.2 ”g/ml against Chang’s liver cells. At 0.1 mg/ml EAF had similar total flavonoid content to SNE, but a significantly higher total phenol content. Conclusion: The ethyl acetate fraction of S. nodiflora, exhibited the most potent antioxidant activity. It inhibited the proliferation of breast and leukemic cancer cell lines, whiles having weak cytotoxic effect on normal liver cells. These can be explored for further drug development

    Identification of novel candidate targets for suppressing ovarian cancer progression through IL-33/ST2 axis components using the system biology approach

    Get PDF
    Background: Cancer-associated fibroblasts (CAFs) of ovarian cancer (OvC) are the most prevalent element of the tumor microenvironment (TM). By promoting angiogenesis, immunological suppression, and invasion, CAFs speed up the growth of tumors by changing the extracellular matrix’s structure and composition and/or initiating the epithelial cells (EPT). IL-33/ST2 signaling has drawn a lot of attention since it acts as a pro-tumor alarmin and encourages spread by altering TM.Methods: Differentially expressed genes (DEGs) of the OvC tumor microenvironment were found in the GEO database, qRT-PCR, western blotting, and immunohistochemistry, and their presence and changes in healthy and tumor tissue content were examined. Primary cultures of healthy fibroblasts and CAFs obtained from healthy and tumor tissues retrieved from OvC samples were used for in vitro and in vivo investigations. Cultured primary human CAFs were utilized to investigate the regulation and the IL-33/ST2 axis role in the inflammation reactions.Results: Although ST2 and IL-33 expression was detected in both epithelial (EPT) and fibroblast cells of ovarian cancer, they are more abundant in CAFs. Lipopolysaccharides, serum amyloid A1, and IL-1ÎČ, the inflammatory mediators, could all induce IL-33 expression through NF-ÎșB activation in human CAFs. In turn, via the ST2 receptor, IL-33 affected the production of IL-6, IL-1ÎČ, and PTGS2 in human CAFs via the MAPKs-NF-ÎșB pathway.Conclusion: Our findings suggest that IL-33/ST2 is affected by the interaction of CAFs and epithelial cells inside the tumor microenvironment. Activation of this axis leads to increased expression of inflammatory factors in tumor CAFs and EPT cells. Therefore, targeting the IL-33/ST2 axis could have potential value in the prevention of OvC progression

    An Integrated Approach to the Prediction of Chemotherapeutic Response in Patients with Breast Cancer

    Get PDF
    BACKGROUND: A major challenge in oncology is the selection of the most effective chemotherapeutic agents for individual patients, while the administration of ineffective chemotherapy increases mortality and decreases quality of life in cancer patients. This emphasizes the need to evaluate every patient's probability of responding to each chemotherapeutic agent and limiting the agents used to those most likely to be effective. METHODS AND RESULTS: Using gene expression data on the NCI-60 and corresponding drug sensitivity, mRNA and microRNA profiles were developed representing sensitivity to individual chemotherapeutic agents. The mRNA signatures were tested in an independent cohort of 133 breast cancer patients treated with the TFAC (paclitaxel, 5-fluorouracil, adriamycin, and cyclophosphamide) chemotherapy regimen. To further dissect the biology of resistance, we applied signatures of oncogenic pathway activation and performed hierarchical clustering. We then used mRNA signatures of chemotherapy sensitivity to identify alternative therapeutics for patients resistant to TFAC. Profiles from mRNA and microRNA expression data represent distinct biologic mechanisms of resistance to common cytotoxic agents. The individual mRNA signatures were validated in an independent dataset of breast tumors (P = 0.002, NPV = 82%). When the accuracy of the signatures was analyzed based on molecular variables, the predictive ability was found to be greater in basal-like than non basal-like patients (P = 0.03 and P = 0.06). Samples from patients with co-activated Myc and E2F represented the cohort with the lowest percentage (8%) of responders. Using mRNA signatures of sensitivity to other cytotoxic agents, we predict that TFAC non-responders are more likely to be sensitive to docetaxel (P = 0.04), representing a viable alternative therapy. CONCLUSIONS: Our results suggest that the optimal strategy for chemotherapy sensitivity prediction integrates molecular variables such as ER and HER2 status with corresponding microRNA and mRNA expression profiles. Importantly, we also present evidence to support the concept that analysis of molecular variables can present a rational strategy to identifying alternative therapeutic opportunities

    Systematic Review of Potential Health Risks Posed by Pharmaceutical, Occupational and Consumer Exposures to Metallic and Nanoscale Aluminum, Aluminum Oxides, Aluminum Hydroxide and Its Soluble Salts

    Get PDF
    Aluminum (Al) is a ubiquitous substance encountered both naturally (as the third most abundant element) and intentionally (used in water, foods, pharmaceuticals, and vaccines); it is also present in ambient and occupational airborne particulates. Existing data underscore the importance of Al physical and chemical forms in relation to its uptake, accumulation, and systemic bioavailability. The present review represents a systematic examination of the peer-reviewed literature on the adverse health effects of Al materials published since a previous critical evaluation compiled by Krewski et al. (2007). Challenges encountered in carrying out the present review reflected the experimental use of different physical and chemical Al forms, different routes of administration, and different target organs in relation to the magnitude, frequency, and duration of exposure. Wide variations in diet can result in Al intakes that are often higher than the World Health Organization provisional tolerable weekly intake (PTWI), which is based on studies with Al citrate. Comparing daily dietary Al exposures on the basis of “total Al”assumes that gastrointestinal bioavailability for all dietary Al forms is equivalent to that for Al citrate, an approach that requires validation. Current occupational exposure limits (OELs) for identical Al substances vary as much as 15-fold. The toxicity of different Al forms depends in large measure on their physical behavior and relative solubility in water. The toxicity of soluble Al forms depends upon the delivered dose of Al+ 3 to target tissues. Trivalent Al reacts with water to produce bidentate superoxide coordination spheres [Al(O2)(H2O4)+ 2 and Al(H2O)6 + 3] that after complexation with O2‱−, generate Al superoxides [Al(O2‱)](H2O5)]+ 2. Semireduced AlO2‱ radicals deplete mitochondrial Fe and promote generation of H2O2, O2 ‱ − and OH‱. Thus, it is the Al+ 3-induced formation of oxygen radicals that accounts for the oxidative damage that leads to intrinsic apoptosis. In contrast, the toxicity of the insoluble Al oxides depends primarily on their behavior as particulates. Aluminum has been held responsible for human morbidity and mortality, but there is no consistent and convincing evidence to associate the Al found in food and drinking water at the doses and chemical forms presently consumed by people living in North America and Western Europe with increased risk for Alzheimer\u27s disease (AD). Neither is there clear evidence to show use of Al-containing underarm antiperspirants or cosmetics increases the risk of AD or breast cancer. Metallic Al, its oxides, and common Al salts have not been shown to be either genotoxic or carcinogenic. Aluminum exposures during neonatal and pediatric parenteral nutrition (PN) can impair bone mineralization and delay neurological development. Adverse effects to vaccines with Al adjuvants have occurred; however, recent controlled trials found that the immunologic response to certain vaccines with Al adjuvants was no greater, and in some cases less than, that after identical vaccination without Al adjuvants. The scientific literature on the adverse health effects of Al is extensive. Health risk assessments for Al must take into account individual co-factors (e.g., age, renal function, diet, gastric pH). Conclusions from the current review point to the need for refinement of the PTWI, reduction of Al contamination in PN solutions, justification for routine addition of Al to vaccines, and harmonization of OELs for Al substances

    Cell Death Pathways: a Novel Therapeutic Approach for Neuroscientists

    Get PDF
    • 

    corecore